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SUMMARY

In the fan stage of a turbofan engine, broadband noise is generated by turbulent flow impinging

on rotor and stator leading edges and by turbulence passing over trailing edges. This report

provides an analytical model for prediction of the leading edge sources at both the rotor and

stator. Whereas previous modeling treated rotors and stators as isolated blade rows (thereby

ignoring reflection/transmission effects of neighboring blade rows), the analysis herein addresses

broadband noise generation in a fully coupled environment. Modal scattering by the stator and

mode/frequency scattering by the rotor are included in the acoustic/vortical coupling. This brings

in the mode trapping physics previously included only in analyses of tone noise. Rotors and

stators are treated as rectilinear cascades immersed in a mean flow that is constant in the

spanwise direction. The cascade response theory recognizes 3D perturbations so that a true 3D

turbulence spectrum can be used for excitation. Flow turning at both blade rows is handled by

unsteady actuator disk theory based on the 4 linearized equations for conservation of mass and

momentum.

If each acoustic mode/frequency combination were coupled to all others, the coupling analysis

would be unmanageable. However, in developing the analysis, an important principle was

discovered. The set of all participating modes divides itself naturally into many mode sub-sets

that only couple within themselves. This property of "independent mode sub-sets" makes the

broadband problem tractable and is the basis for the analysis. It was found that simple modal

averaging techniques can be applied to eliminate many of these sub-sets from calculations and

thereby save considerable computational effort.

This report presents the derivation of the coupling theory in detail and provides documentation

for the associated computer code CupBB. Computed results show that accounting for coupling to

adjacent blade rows adds considerably to downstream noise and increases the predicted split

(or differential) between upstream and downstream sound power. Effects are large enough to

indicate that absolute level predictions in the future should include the coupling physics.

The broadband coupling method developed here can be adapted to CFD procedures in the future.

Lessons learned regarding modal sub-sets and modal averaging will carry over with little

modification.
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SECTION 1

INTRODUCTION

Fan noise is generated when flow non-uniformities interact with rotor blades and stator vanes as

suggested in Figure 1. Sources can be classified into leading or trailing edge types. Leading edge
sources include rotor inflow disturbances such as inlet distortion, atmospheric turbulence, and duct

boundary layer turbulence. Stator inflow disturbances are primarily from the rotor wake and endwall

flow. Trailing edge noise (also called self noise) is generated when turbulence in a blade or vane

boundary layer interacts with a trailing edge. Fan noise can be further classified into tones or

broadband as indicated in Figure 2. Tone noise is generated when the rotor interacts with a fixed flow

distortion and when the stator interacts with the periodic component of the rotor wakes. This report is

concerned with broadband noise caused by turbulence. The focus herein is on leading edge sources

although the coupling methodology could be extended to trailing edge sources (self noise) as well.

Duct Rotor Wake
Boundary Layer

/Turbulence\

SPL
dB

Jet

• _ Fan Tones

Fan Brladband

Frequency

Fgure 1. Noise generation in a turbofan by
turbulence in rotor wakes impinging on stator.

Figure 2. Fan noise spectrum showing major
contributing sources.

Modeling for turbulence leading edge noise dates back at least to the early 1960's when simple
estimates were made of overall noise based on turbulence intensity. No spectral distributions could be

made with those early models. In the ensuing years, broadband modeling has become increasingly

sophisticated with inclusion of spectral shapes, non-compactness, 3 dimensionality, and cascade

effects. However, all of the preceding modeling treated noise generation by an isolated blade row

only. For example, in noise generation at the stator in Figure 1, the only role of the rotor would be to

generate turbulent wakes. Effects of acoustic reflection and transmission were ignored in earlier work.

The purpose of this report is to provide a first look at the effects a neighboring blade row on broadband

noise generation. For noise generation at the stator, rotor reflection and transmission loss are

obviously issues to consider. However, the report goes beyond that by including full unsteady

coupling of the pressure and vortical waves between a rotor and stator. In addition to reflection and
transmission losses at both blade rows, this accounts for mode and frequency scattering and mode

trapping.

This report is an extension of previous work by the author: Reference 1 treats coupled rotor/stator tone
interaction in 2D; References 2 and 3 analyze broadband noise generated by isolated rotors and stators.
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The present report combines these 2 methodologies in a coupled broadband model that has been coded

as CupBB. This work has been enabled by the appearance of a harmonic cascade theory by Glegg

(ref. 4) that this report adapts to the broadband problem. Glegg's theory accounts for inflow

disturbances with wavenumber in all 3 coordinate directions; hence, 3D turbulence can be represented

rigorously.

In the following, Section 2 presents background on the tone theory for coupled cascades and on the

broadband theory for isolated cascades. It then outlines the strategy for combining these into the

coupled broadband model. Section 3 summarizes the equations to be solved for the mean and unsteady

flow. Section 4 develops the concept of "independent mode sub-sets" that facilitates the analysis.

Sections 5 and 6 derive the coupling equations. Section 7 solves the coupled equations for the

broadband application and shows how they are driven by a turbulence spectrum, Section 8 provides

some verification of the new theory and presents sample calculations of sound power spectra to

establish the importance of coupling effects. Section 9 gives some concluding remarks. Appendices A

and B show how Glegg's theory is adapted to the current application. Appendix C derives equations

for unsteady actuator disks used to represent flow turning at the rotor and stator. Finally, Appendix D

provides a list of notation.

NASA/CR 2001-211136 2 T



SECTION 2

BACKGROUND & STRATEGY FOR COUPLED BROADBAND THEORY

This section provides brief reviews of earlier theories for tone noise generation in a coupled

rotor/stator environment and for broadband noise from an isolated rotor or stator. Then the strategy is

outlined for combining these methodologies into the coupled broadband prediction scheme.

Review of Coupled Tone Method

Reference 1 presents a 2D scheme for coupling a rotor and stator modeled by flat plates as in Figure 3.
The rotor sends acoustic and vortical waves to the stator and the stator sends acoustic waves to the

rotor in a full unsteady coupling. Excitation of the system was via the periodic component of the rotor

wake. It was found for certain vane/blade

ratios that the blade passing frequency

component of the wake produced high levels

of 2×BPF and 3×BPF noise through

frequency scattering at the rotor and

trapping of the fundamental interaction
mode between rotor and stator. After

developing the coupling scheme via 2D

modeling, it was extended to quasi 3D in

Ref. 5 and is used at Pratt & Whitney for fan

tone prediction in TFaNS, the Theoretical

Fan Noise Prediction System. We will

outline operation of the system in a
2 dimensional context but readers interested

in details should consult Refs. 1 and 5. The

coupling scheme is rederived later in this

report for broadband application so that this

report does not depend on the references.

DR

,k

REGION 1 _

J
J

REGION 2 J REGION 3

ROTOR STATOR

Figure 3. Flat plate representation for coupled rotor/
stator tone noise in Ref. 1.

Waves are considered in 3 regions per Figure 3 and counted by the index i'. Also, there are 3 wave

t3,pes: T=I, 2 for upstream/downstream propagating pressure waves and T = 3 for vortical waves in 2D.

The pressure waveform for a type T wave in region 1"is written in a Fourier series as

p_(x,t)= Po _ _ A_(n,k)e i[k-'Tntx+mo-nBlD'] , T=I,2 (2.1)

n k

Coordinate x corresponds to the fan axis and ¢ is used for the transverse coordinate. Circumferential

mode order given by the classic Tyler-Sofrin mode selection rule (Ref. 6):

m =nB 1 - kB 2 (2.2)
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B_ and B 2 are the numbers of blades and vanes. The first summation is over the blade passing

harmonics, counted by n. The second summation is over k, the stator scattering index. Vortical modes

are represented by their transverse velocity component in parallel form

v_-(x,t)=ao__,y__ A?f(n,k)e ilk-'T'kx+m¢-'Blf2t] , T= 3 (2.3)
n k

Scattering by the blade rows is denoted by coefficients defined in the following notation that relates

modal amplitudes to each other

A{r,(nr"",k') _ aTT-""'r(n',k';n,k)A_(n,k) (2.4)

t

where ,.rr. , ,aT, r _n ,k;n,k) is the scattering coefficient giving the ratio of output wave amplitudes (with

the primes) to input wave amplitudes (without primes). When all of these scattering coefficients are

found from a cascade acoustic theory, the resulting equations are arranged in matrix form as follows

1A]

A_
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a_
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Im
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a 3

.a 3

D

s_l
D

= 3

q

st_ st_
D E

D [3

D D

s_l 21S23

"_1 21
S_ $33

slf D _I_ D D
I

D D DiD D D
I

D n _',D [3 a

D s_
S_l_ s
sff D

D D

[3 D

D D

s_2 s2
D D

@ [3

[3 D

@ s_p
s2;Is3_

D D D D s2 s2
D E, D $2322 D D

[3 DID s_ _

A_

xA;l
A;
Z_
A;
A;

rS_]

8_
87

+ B 2

8_
8_
_3

B 3 '

(2.5)

This partially compressed notation suppresses the n, l<subscripts shown explicitly in Eq. 2.4. Dots in

the matrix represent zero blocks. The notation can be further compressed so that Equation 2.5 reads

A = S A + B (2.6)

B is the source vector or array of coefficients of prescribed waves that excite the system. Solution of

this coupled system for the state vector A is given formally by

A = (l-S) -I B (2.7)

For wake excitation, the only non-zero elements of B would be the B2(n,k) 's to represent vortical

waves (T = 3) from region #2. These coefflcients, in an expression like Eq. 2.3 would define the rotor

wake (only the k = 0 term is needed for convected disturbances).
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When all of the elements of the state vector are found from Eq. 2.7, the entire wave field can be

constructed from Equations 2.1 and 2.3.

Over a range of vane/blade ratios, the fundamental interaction mode can be trapped between rotor and

stator. In this case, the tone coupling effect can be very strong and actually dominate noise generation.

For example, Fig. 4, reproduced from Ref. 1, shows the downstream sound power in 3 BPF harmonics

that results from exciting the stator with the BPF fundamental of the rotor wake in a coupled

environment. Below BPF cuton in the aft duct, which is at Mr = 0.80, the noise is dominated by energy

scattered up in frequency by the rotor. We now know how to avoid this situation by proper choice of

vane count (and thereby, mode selection). However, since broadband noise generation includes all

modes, mode trapping could also be a factor in that spectrum component and may be more difficult to

control. One objective of the model developed this report is to determine the importance of mode

trapping in broadband fan noise.

AFT

PWL

dB

90
I

Excitation by
1 W_e Hatmoai¢

BPF _. __-
80 ........

1,",,/ ",---J _..- __.
5O

//
//

!i

//
!

t

!

40

30

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Rotor Rotational Mach Number

Figure 4. Coupled tone calculation from Ref. 1 showing 3 BPF harmonics resulting from excitation of the stator
by the one harmonic of the wake at BPF.
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Review of Broadband Method for Noise from an Isolated Stator

Here we review how the harmonic acoustic response of a cascade can be used in a broadband model

for noise caused by inflow turbulence. This and the above coupled harmonic analysis will be used to

explain how the coupled broadband formulation will be derived.

First, consider the cascade harmonic problem

with mean flow and upwash as in Figure 5. We

write the harmonic upwash waveform as

w(x, t) = Wq e i(kx3qx+q¢+v:-°at) (2.8)

In this notation, _ = y/R represents angle around

an "unwrapped annulus" of effective radius R.
= takes the role of the radial coordinate and

v is its associated wavenumber. With axial

wavenumber

co-qv

R (2.9)
kx3q = U

J
J
J

X

Figure 5. Sketch for cascade discussion.

Eq. 2.8 represents a convected wave (as in the frozen gust model of turbulence). Say we have a

cascade response function F_(to, v) from an analysis like Glegg's (Ref. 4) that gives the upstream

acoustic pressure resulting from the upwash as

p(x, t) = Wq Z Fk (to,V) e i[kxlqkx+(q-kB2)¢+vz-mt]

k

(2.10)

where k is the scattering index for the stator and kxlqk is the axial wavenumber for acoustic waves.

With these equations, the harmonic acoustic pressure field can be computed from the inflow

perturbation.

So far the discussion has related to harmonic excitation and response; Wq is a Fourier coefficient and

Eq. 2.10 is a Fourier series. Now, we want to extend the above for application to broadband noise, in

which case we deal with Fourier transforms and Fourier integrals. We generalize the inflow

representation of Eq. 2.8 to aperiodic waves

W(X't)=Z ff Wq(to,v)ei(kx3qX+q¢+v:-°gt) dtodv

q

(2.11)

which represents the upwash disturbance as a sum/integral over circumferential order q, radial order

v, and frequency to. (In a more general type of flow, an integral over axial wavenumber would also.

be included. However, for convected waves, axial wavenumber and frequency are related through

Eq. 2.9 and the fourth integral is not required.) There is an issue of existence of the Fourier transform

Wq in Eq. 2.11. However, there are standard methods to deal with this, as applied later in the formal
derivations.

NASA/CR--2001-211136 6



With inflow represented by Eq. 2.11, the corresponding aperiodic response (generalizing Eq. 2.10) is

p(x,t)= _ ZSSwq(O),V)Fk(Og, V)g i[kxlq_x+(q-kBe)¢+v:-c°t] dcodv (2.12)

k q

Note that Wq(CO, v ) is now a Fourier transform rather than a Fourier coefficient but that Fk(oo, v) is the

same acoustic harmonic response function used for the tone analysis.

In principle, any non-periodic excitation and response fields could be represented in these forms. This

is not actually possible in the case of turbulent flow, however, because w(x,t) [and Wq(CO,V)] cannot be

known in sufficient detail. Instead we deal with statistical quantities (or expected values). In the

following we review how the expected value of the pressure mean square (and its spectrum) can be

related to the turbulence spectrum in an isolated cascade analysis. This is provided as a point of

departure for the coupled broadband analysis.

To start, we square Eq. 2.12 and take the expected values of both sides, giving

(p2(X't))=Z Z ZZ SS SS(Wq ((-O'V)Wq'('(-O'V)] Fk((-O'V)Fk'(O)'V)

k k' q q'

Xj{(kxlqk -k_.lq,k,)x+[(q-kB 2 )-(q'-k'B 2 )]O+(v-v')z-(co-w')t} do) dog" dv dv'

(2.13)

where { ) is the expected value operator. It can be shown that the expected value of the product of

velocity transforms is related to the upwash component of the turbulence spectrum as follows

f P _RR I(Wq((.O,V)Wq'((.O,V ))= _qq'C_(OO--OJ')_(V--V )Oww(K) (2.14)

Turbulence wavenumber K has components

k q
K = ("x3q,-_-,V) (2.15)

The delta functions in Eq. 2.14 eliminate 2 integrals and a summation, reducing Eq. 2.13 to

1 _k SS¢_ww(K)Fk(Ok,v)f;,(ok,v)e i[(kxlqk-kxlq_')x-(k-k')B2(_] dcodv (2.16)
q

This result for the mean square pressure varies with position via the ¢ variable. If we limit our interest

to the average over ¢, the averaging process produces another delta, 5kk,, and we arrive at our final

form for the mean square pressure integrated over all frequencies

( )'P 2(x't) = _"Z ZSS '.w(U)lFk(° ,v)l2d_odv (2.17)
k q
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where it can be seen that the x dependence has disappeared. (Actually, this is true only for the

propagating waves.) Usually, we want the sound spectrum or power spectral density of the pressure;

this is just the frequency integrand:

q

(2.18)

This establishes a very simple relation between the spectrum of turbulence and the sound spectrum

through the square of the magnitude of the acoustic response function. There is no phase information;

only magnitudes appear. We are generally not interested in phase information for the sound spectrum

and this is fortunate since turbulence models do not include phase.

Figure 6 compares computed results from this theory with scaled data from an ADP fan model. In

applying the 2D geometry and mean flow, conditions at the 85% radius were used. Turbulence

intensity and scale were the only free parameters and they were adjusted for a good fit to the data.

Further detail is given in Ref. 2. The fit is reasonably satisfactory: overall shape, including high

frequency roll off, is good and the upstream/downstream split matches that of the data. However, it

will be seen that the match to the upstream/downstream split was fortuitous since the more complete

analysis shows that the rotor blocks much of the upstream noise from the stator.

140

130

" 120
o_
m
0

--_ 110

100

! ,il
i i,t ! t

i

Upstream

Downstream
I

• Inlet Data

• Aft Data

--- _ PWLup
PWLdn

90

100 1000 10000

1/30B Frequency - Hz

Figure 6. Calculations from BBCascade compared with scaled test data. Plot reproduced from Ref. 2.
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Broadband Coupling

Now we ask how to combine the 2 types of analysis above into a coupled broadband model. The key

is Eq. 2.18: think of the turbulence spectrum _ww(K) as excitation for the system and think of

IFk (co,v)2 as the system response function. There is a parallel with the harmonic solution found in

Eqs. 2.1 and 2.7; in this case the system response function (I-S) -1 is the inverse of a large matrix of

Fourier coefficients. In Section 6 we will see that (l-S) -_ takes the role of Fk(c0, v) in Eq. 2.10. An

inte_al/summation like Eq. 2.18 will be wrapped around this entire matrix system. In the broadband

analysis, the elements of S will be Fourier transforms instead of Fourier coefficients. This approach

retains all of the phase information in the frequency and mode scattering between the blade rows but

then gives up the phase information in the final working formulas, as was the case with Eq. 2.18.

Again, the sound spectrum will be driven by the turbulence spectrum.

The analysis is simpler than might be expected because of the property of "independent mode sets"

mentioned in the Summary and Introduction. Sections 3 to 6 establish the coupling matrix system,

Section 7 connects the matrix system to the turbulence spectrum and gives the final working equations

for the computer code CupBB, and Section 8 shows some computed examples.

NASA/CR--2001-211136 9





SECTION 3

MEAN FLOW AND GENERAL WAVE CHARACTERISTICS

In this section we define the environment for the coupled blade row analysis. This includes the duct

boundaries, mean flow, and boundary conditions. It also gives the general properties of the

perturbation waves consistent with this ducted flow environment (but without yet accounting for the

presence of blades and vanes).

In later sections, we use Glegg's unsteady cascade analysis (Ref. 4) for the acoustic and vortical

responses of the blade rows. Since this treats waves with 3 independent wavenumbers, it permits a

completely general representation of turbulent flow. However, it is based on rectilinear geometry and

a uniform background flow. Because of this, we represent flow in a fan duct annulus by "unwrapping"

it and enforcing periodic boundary conditions in the tangential direction (i.e., variables at ¢ =+__nare the

same). We introduce an "effective radius" R, which is used for scaling and to make the equations look

more like the true 3D flow equations. R relates the tangential angular and linear coordinates through

y =_R.

Geometry and Mean Flow
The x, y, - coordinates are shown in Figure 7. x is parallel to the machine axis, y is the tangential

coordinate (parallel to the direction of rotor rotation), and - corresponds to the radial coordinate. Inner

and outer duct walls are represented by the z = 0 and - = h planes. Periodic

Y

.,x S
h _'i¢ /

111

ppP

/ppl

X

Figure 7. Definition of boundaries and mean flow

boundaries are at y = _-,_R. Mean flow is the same everywhere with axial component U and tangential

(or swirl) component V. Represented in vector form, the mean velocity is

(3.1)
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Perturbation Equations

Here we follow the general approach and notation of Smith (Ref. 7) but extend it to 3 dimensions.

Unsteady flow satisfies the linearized continuity and momentum equations

Dp + p,.a_.V, u = 0 (3.2)
Dt

where the convective derivative is

On
= -Vp (3.3)

Pr Dt

D 0 + U. V (3.4)
Dt Ot

and subscript t" implies mean value in a region designated by r.

and time, solutions have the general form

ei(kxX+ky y+k_ z-cot)

Note that the convective derivative yields

D
m = i(-co + U k x
Dt

For perturbations periodic in space

(3.5)

+ V ky ) (3.6)

and, accordingly, define a parameter that occurs frequently in the analysis

2_=-o_+U kx +V ky (3.7)

When we substitute the solutions from Eq. 3.5 into the continuity and momentum equations, the
exponentials cancel and we can write

,_ a2prkx a2prky a2prkz]rfi ]

k x/p,. _. 0 0 Jti]=0
ky / Pr 0 2t 0

k_ / Pr 0 0 ),

(3.8) .

Non-trivial solutions are obtained from

.2 k 2 =
_2[,,1,2_a 2(k2 +ky + .)] 0 (3.9)

NAS A/CR--2001 - 211136 12



This permits 4 wave types.

¢ =y/R, gives /5' = m/R.

Eqs. 3.5 to give sines and cosines for - dependence.

following form fits all 4 wave types

For periodicity in y, we require m to be an integer in ky y = me. This, with

Also, for hard wall boundary conditions, we use linear combinations of

Thus, /.t is an integer and k- = (_zr/h). The

PT = -fiT"ei(kxr x+m¢-°gt) COS(-_7-')

Ur = -fir ei(k_v x+m¢-°t) COS(_l--)

-- ei(k._Tx+mO-cot) COS(_=)V T _- V T

w 1. = rT'T ei(k._zx+m¢ -_t) sin(.._7-- )

T = 1,2,3,4

(3.10)

These, with the correct relationships between the pressure and velocity magnitudes (given below),

satisfy the governing equations, the periodicity conditions in the y direction, and zero radial velocity at

the duct walls at - = 0 and h. Characteristics of the different wave types will be discussed below.

Pressure Waves

In Eq. 3.9 pressure waves are associated with

2 k?[_.2_a2(k2+ky+ .)1=0 (3.11)

This can be solved for the axial wavenumber k,:

k,. - a2 _I [u(-°)+Vky)+-a"_[(-c°+Vky)i-(a2-U2)(k2+k2)JU2 _ (3.12)

As in Smith's analysis, we identify upstream-going pressure (or acoustic) waves as Type i waves:

kx' = 2 _1[U2 U(-09 + mV/R)-a,._(-o_+mV/R) 2 - (a2-U2)[(m//R)2+(11_)2] ] (3.13)
a r

and downstream-going pressure waves as Type 2 waves:

kx2=a2.1u2[U(-co+mV/R)+ar_(-og+mV/R)2-(a2-U2)[(m//R)2+(la_>2]J (3.14)

Depending on frequency and mode orders m and/_, the argument of the square root can be positive or

negative. If it is positive, the axial wavenumber is pure real and waves propagate without decay. If the

argument is negative, the axial wavenumber is complex and the signs of the square roots must be

chosen so that waves decay exponentially away from the blade row in the x direction.
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For the pressure waves we use the momentum equation to relate the complex velocity magnitudes to

the complex magnitude defining the pressure waves:

k.v i-

_ m/R --
VT -- p,.2r Pr

i_zr/h _
_"T- Pr_T Pr

T =1,2 (3.15)

Vortical Waves

In Eq. 3.9 vortical waves are associated with _ = 0. i.e.,

-co+U kx +V k_, =0

which can be solved for their axial wavenumber.

waves with the same wavenumber

09 - mV/R
k._7--

(3.16)

Since A, was squared, there are 2 independent vortical

T =3,4 (3.17)
U

Substitution into the momentum equation confirms that the vortical waves have no pressure

Pr =0 T =3,4 (3.18)

Also, substitution of Eq. 3.17 into the exponentials of Eq. 3.10 verifies that the type 3 and 4 waves are

purely convected. The relationships between the velocity components depend on continuity and the

actual families to be used in the modeling. These will be defined in Section 5.
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SECTION 4

PERMITTED MODES AND THE SCATTERING RULES

We intend to build a rotor/stator coupling scheme based on matching modal output of the stator to

modal input of the rotor and vice versa. The usual tool for studying modal behavior in the fan

environment is the "mode order/frequency plot" schematically shown at the right in Figure 8. In our

convention, modes with positive m are co-rotating (rotating in the same direction as the rotor). Such

plots permit us to locate mode orders at

various frequencies and to determine whether

they propagate (are cut on) or decay (cut off).

Modes in the shaded area are cut on; hence,

we can see that that there are more modes

propagating at higher frequencies. The

cutoff boundaries are given by the square

root in Eqs. 3.13 and 3.14. When the

argument is positive, modes propagate. Test

data shown in Figure 9 were plotted in the

same format. Acoustic power can be found

at all integer mode orders in the cuton area.

When the radial modes are included, we find

that thousands of modes must be accounted

for to get a complete representation of the
noise field.

We will see that, when a mode impinges on

the stator, it scatters out a series of modes of

different circumferential order. When each

of these impinges on the rotor, scattering

there produces modes of different orders and

frequencies. If any mode could scatter into

any other mode and frequency, the modal

accounting scheme would be unmanageable.
We will soon see that this is not the case but

that only modes within certain sub-sets of the

Frequency

Cut Off _ ! / Cut Off

--...j/
Circumferential Mode Order - m

Figure 8. Mode order/frequency plot for p = 0

5OOO

2500,

0'

-40 -30 -20 -10 0 t0 20 30 40

Spirting Orcler m Loosl'dveco-rotating)

Figure 9. Experimental mode order-frequency plot from
Boeing's 18 inch research fan, Ref. 8.

total mode count are connected with each other; there is no scattering from one sub-set to another.

Once this is understood, the fan broadband analysis can be set up as a series of "small", independent

coupling problems and the situation becomes manageable. This section is devoted to explaining the

kinematics of broadband scattering/coupling and establishing the independent modal sub-sets just
mentioned.

Permitted Modes

Modal scattering should already be understood in the tone context to readers familiar with the Tyler-

Sofrin fan noise theory (Ref. 6). In the tone case, the frequencies and modes are restricted to
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frequency" o9 = nBlf2, n = ...- I, O, 1, 2, ...
(4.1)

mode order" m = nB 1 - kB 2 k =...- 1, O, 1, 2,...

i.e., frequencies are restricted to multiples of blade passing frequency (counted by n) and

circumferential mode orders are restricted to the values of m resulting from integer values of the rotor

and stator scattering indices, n and k. Furthermore, it was shown in Ref. 1 that, even after scattering

back and forth between rotor and stator, waves are still restricted the frequencies and mode orders in

Eq. 4.1. Thus, Eq. 4.1 is a mode set that can scatter only among its members but not to other orders

and frequencies. Broadband scattering is more general: any frequency and any integer mode order can

occur. In the following, we will find how Eq. 4.1 is generalized for the broadband problem.

The space-time dependence of the pressure waves in Equation 3.10 is given by

ei(kxx+m_ -c°t) COS(P_r_h ) (4.2)

where we can identify circumferential mode order m and radial mode order p. A major

simplification in the analysis arises when we note that there is no scattering from one radial mode to

another. This is an artifact of using rectilinear geometry and constant mean flow and is true because

the pressure modes and upwash components of the vortical modes (see Eq. 3.10) have cosine

dependence on the radial (-) coordinate. A cosine input produces a cosine output with the same p.

This simplification would not apply strictly in a situation with real geometry and flow but, even there,

the radial coupling should be weak and may not be a major factor in noise generation. Thus, radial

order p becomes a parameter and, for coupling at any x plane, we can focus on circumferential orders

via the exponential e i(m_)-wt) . To establish the scattering rules, we define m_ - cot to be the kinematic

phase

I/t = me - cot (4.3)

and track its behavior as waves scatter back and forth between the rotor and stator.

To start the discussion, we must define interblade phase angle cr and show what happens to it upon

scattering by a cascade. Since cr is the phase shift from y = 0 to y = g (the blade gap), it follows

(using the exponential form in Eq. 3.5) that cr = kyg. In our rectilinear geometry the tangential

wavenumber k\r = m/R. Cascade theory (see Ref. 4 or 7) teaches us that, for an input wave with

frequency co and circumferential wave number ky =cr/g, the scattered waves have the same frequency
co and their circumferential wavenumbers are

cr - 2tck
I --

ky (4.4)
g

where k is an integer that we call the scattering index and the prime indicates a scattered wave.

Consider a wave input to the stator with circumferential order q and frequency coo. The

circumferential wavenumber of the input wave is ky = a/g = q/R. And since Be g=2rd?, it follows that
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2zrq
cr = _ (4.5)

B2

And for ky = m/R, it can be seen from Eq. 4.4 that the orders of the scattered modes are given by

m = q - kB 2 (4.6)

Thus, from Eq. 4.3 the kinematic phases of the waves scattered by the stator with input qt = q(9 - coo t

are

V" = (q - kB2 )¢ - COot

To consider scattering at the rotor, shift to rotor coordinates via

(9= (9,.+

Then, the same mode viewed in the rotor frame has phase

IV'= ( q - kBz )(gr - [COo- (q - kBz )_ ]t

It can be seen that the frequency in that frame is

(4.7)

(4.8)

(4.9)

CO,.= COo- ( q - kB2 )_"2 (4.10)

For scattering by the rotor, we use the index n (with the opposite sign for convenience) so that the

waves scattered by the rotor have kinematic phase

_" = (q +nB 1 - kB 2 )(9,. - [COo- (q - kB2 )_]t (4.11)

Scattering does not change frequency in the rotor frame. When this expression is shifted back to the

stator frame via (9,.=(9 - £2 t, we find that the same waves have the form

v/" = (q +nB 1 - kB 2)(9 - (COo+ nBl_) t (4.12)

Mode orders have been shifted from the input order q by nB1 - kB2 and frequencies have been

scattered up and down from the input frequency COoby multiples of blade passing frequency nB1£2.

This process of following the scattering from stator to rotor and back can be repeated indefinitely but it

turns out that the waves, when represented in the stator frame, always have the form given by Eq. 4.12.

Furthermore, we could have started with a wave impinging on the rotor and found the same form.

Thus, to summarize, a wave in the stator frame having frequency COo and mode order q scatters as

follows
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frequency' coo _ co = coo + nBl_, n = ... - 1, 0,1, 2,...
(4.13)

mode order : q _ m = q +nB l - kB 2 k =...- 1, O, 1, 2 ....

This result establishes the scattering "independent mode sub-set" property asserted above: if we input

a set of modes with frequencies o)0 + nBlf2 and orders m = q +nB 1 - kB2, those modes only scatter

among themselves and not to other frequencies and not to other mode orders. In particular, at any

frequency, only one out of every B: modes is involved in the scattering.

We can consider coo and q to be frequency and mode offsets from the tone interaction set of Eq. 4.1.

The set of modes and frequencies resulting from a choice of coo, _t, and q is independent of sets with

other values of these indices. Thus, in the computer code, we can set up loops on COo,/.t, and q and
solve a relatively small coupled problem for scattering on n and k for each of these combinations. In

each case, the input is a vector of turbulence modes for all n and k and the response is found

simultaneously for the acoustic modes for the same ranges of n and k. Fortunately, the required

range of k is limited by acoustic cutoff. The range of n to be included could be limited by the

frequency content of the turbulence; however, practically speaking, this range may be limited by

computer resources. What we hope is that the n (frequency) range can be truncated at a reasonable

value without significantly sacrificing accuracy for the frequencies included in the analysis. This did

turn out to be the case for the tone problem (Ref. 1) and will be verified later in the broadband case.

This independent mode sub-set property (including the absence of coupling between radial orders)

changes the broadband coupling problem from one that appeared intractable to one quite manageable,

at least in terms of the rectilinear geometry used herein. The operation of the independent sub-set

property will be made clearer below with illustrations in terms of mode order/frequency plots.

Mode Order/Frequency Plots

The plot shown in Figure 9 was constructed for a fan with 18 blades and 45 vanes and applies to the

axial flow regions upstream of the rotor and downstream of the stator. In general, the cuton boundaries

can be determined by setting the argument of the root in Equation 3.13 to zero:

(-(.0 + mMy )2 _ fl._ ( m2 + _2) = 0 (4.14)

where o5 = coR/a r and q = t.trcR/h . This can be re-arranged as follows

2Q2ft.2 _2 = (O3My + f12m)2 + fl'fl., (4.15)

which is the equation of a conical surface enclosing the cut on values of m and v_ for any frequency.

(To...........................visualize the cone, recognize inFigure 9 that the cone axis is the o5 coordinate, the v_ axi s is out of

the paper, and that the plot is a cut through the _ =0 plane.)
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Frequency in Stator Frame
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Figure 9. Mode order/frequency plot for fan in axial flow at M x = 0.5. B_ = 18, B2 = 45, and MT = 0.5. Also, q = 0

and (0o = BPF/2, Presented in stator reference frame.

I COUNTER-
ROTATING
CUTOFF

I
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Frequency in Rotor Frame

CIRCUMFERENTIAL MODE ORDER - m

Figure 10. Same information as above but presented in rotor reference frame.
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In the _ =0 plane, Eq. 4.16 reduces to equations for straight lines with slopes My + fl_.

o3 = (My +flx)m , v_=0 (4.16)

In Figure 9, the slopes are +fix since M,_ = 0. The large dots on the plot represent permitted modes

according to Eq. 4.13, for a particular values of 090 and q. Scattering at the stator is along the dashed

lines; this is at constant frequency (constant n ) and varying k. Scattering at the rotor is along the

dotted lines; this is at constant k and varying n. It is easily deduced that these lines have slope Mr

and that this slope is less than that of the co-rotating cutoff boundary, M_, +,6,, for cases where the flow

is subsonic relative to the rotor blades.

Figure 10 has exactly the same information as Figure 9 but presented in the rotor reference frame.

Frequency at the rotor is given by Eq. 4.10. Changing reference frames does not change what modes

are cut on; it only changes their apparent frequencies.

Behavior of the independent modal sub-set is now established in Figure 9: with the stator scattering

along horizontal lines and the rotor scattering along the diagonal lines, any mode inside the cuton

limits can communicate with any other such mode through multiple reflections between rotor and

stator. However, only those modes and frequencies are connected with each other. Figure 9 was

plotted with q = 0 and the broadband frequencies half way between the BPF harmonics (090 =

B11-2/2). Other independent mode sets Can be found by taking the dashed and dotted scattering lines as

a rigid pattern and moving the pattern vertically on the page to cover different frequencies and

horizontally to cover different q's. Each new position (each new q and COo) generates a new set of

modes that scatters only among themselves. Furthermore, for radial orders greater than zero, the

pattern of dashed and dotted scattering lines can be held above the plane of Figure 9 to represent

cutting the conical surface for/_ = 1, 2, 3, ... for more independent mode sets. Note, with this example

for 45 vanes, q can take on all integer values from 0 to 44. The broadband frequency variable is

continuous so that any number of ¢oo's could be used; however, a broadband spectrum Could be

reasonably well defined by frequencies at the BPF multiples and halfway in between.

The plots just discussed were generated for axial flow, which would apply upstream of the rotor and
downstream of the stator. Between blade rows, swirl affects the cuton boundaries as shown in

Figure 1 1. Both the swirl flow and axial flow boundaries are plotted. The gray region in the plot

indicates modes that propagate between rotor and stator but are cut off upstream and downstream.

These modes are "trapped"; that is they can bounce back and forth between blade rows, possibly

amplifying, but cannot escape. However, they do scatter to higher mode orders and frequencies that do

propagate and contribute to the radiated noise. This mode trapping and up-scattering was first noted in

the context of tone noise by Topoi, Mathews, and Holheubner (Ref. 9), studied and modeled

extensively by Hanson (Ref. 1), and incorporated in a quasi 3D prediction scheme (TFaNS) by Topol

(Ref. 5). For certain vane/blade ratios, mode trapping/frequency scattering dominates tone generation

in fans. A major objective of the present model is to find how important this mode trapping

phenomenon is for broadband fan noise.

The next 3 sections of this report are devoted to building a broadband noise prediction scheme using

the modal scattering kinematics described above. Section 5 develops a notation for modes (via Fourier

transforms) compatible with the scattering rules of this section. Then Section 6 derives equations for
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Figure 11. Mode order/frequency plot showing cutoff limits for both the axial flow region (upstream of
rotor and downstream of stator) and for the swirl region (between rotor and stator). In the swirl region,

M_,= 0.4. In the shaded region, modes can reflect back and forth between rotor and stator but cannot
propagate beyond the blade rows.

coupling rotor and stator using a matrix of scattering coefficients and vectors of modal amplitudes for

the scattered waves. Section 7 relates a standard turbulence spectrum to a source vector, which drives

the coupled equations, and presents working equations used in the prediction code CupBB. Sample
calculations are shown in Section 8.

The prediction scheme is based on the independent mode set property described above so as to

minimize the required computer resources. Rather than treating broadband prediction as one very

large coupled problem, it is broken down into many small coupling problems via loops on frequency

COo,radial mode order/1, and the mode order shift index q. Each of these smaller analyses finds

amplitudes of all of the modes and frequencies in a mode subset (as shown, for example, in Figure 9)

by solving a series of simultaneous equations (derived in Section 6) for blade row scattering.

Excitation for the system is given by modes of the turbulence input at all the same orders and

frequencies simultaneously.
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SECTION 5

FOURIER TRANSFORMS AND STANDARD WAVESET NOTATION

The preceding section established the scattering rules for broadband rotor]stator interaction. In this

section, we develop a notation system for Fourier transforms tailored to those rules and designed to

facilitate development of the code for noise prediction.

Recall that the totality of modes that participate in the interaction can be broken down into independent

sub-sets that scatter only among themselves. And recall from Section 4 that for excitation with a given

frequency offset coo, mode offset q, and radial order fl, the set of permitted frequencies and

circumferential mode orders is given by

frequency" 09 = coo + nBlD, n = ...- 1, 0, 1, 2, ...
(5.1)

mode order • m = q + nB 1 - kB 2 k .... - 1, O, 1, 2,...

i.e., frequencies are separated by blade passing frequency and circumferential mode orders are

restricted to the values of m resulting from integer values of the rotor and stator scattering indices, n

and k as shown in Figure 9. Thus, in the computer code, we can set up loops on ab, p, and q and

solve a relatively small coupled problem for scattering on n and k for each of these combinations. In

each case, the input is a vector of turbulence modes for all n and k and the response is found

simultaneously for the acoustic modes with the same n's and k's.

The pressure and vortical wave systems are treated separately below.

Pressure Waves

Background flow for the unsteady interactions will be divided into 3 distinct regions as shown in

Figure 3 and counted by the index r:

r=l:

/'=2:

/'=3:

upstream of rotor
between rotor and stator

downstream of stator

Furthermore, in each region, there are 4 distinct wave types (or families) counted by index T:

T= 1:

T=2:

T = 3 and 4:

Upstream-going pressure waves

Downstream-going pressure waves

Two independent sets of vortical (convected) waves

These indices are used to express pressure waves (T = 1 or 2) in region r as a typical Fourier integral

• -boo r

p_ (x, t) = _S P_ (x, e-iOgtco) d co (5.2)

To coordinate with the frequency scattering rule, we break the frequency axis into segments each

BPF long
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oo

fBtfl
p_-(x,t)= ___ aO P]i(x'co° +nail2) e-i(t°°+nala)t dco°

l|=--..o_

(5.3)

and then further expand the Fourier transform as follows

circumferential scattering rules

to coordinate with the radial and

,,o B 2 -1
P

PT"(x, COo+ nBla)= Po _._

p =0 q=0

oo

Z pTrlaqk(O)o +//BI_'_) ei[Ul-"k (x-x_)+me/cos(_)
k _ -..-oo

(5.4)

where po is a reference pressure taken to be the sea level, standard day value, x_- is the x reference

location for the type T waves in region r. We have an independent scattering problem for each

combination of Ojo,/,t , q. The solution to each of those scattering problems gives eT"laqkr (COo+ nBID-)

for a range of n's and k's as shown in the mode/frequency plot of Figure 9.

We will solve for only a small number of COo'S and they will be discretized as c0j. For example, if we

are satisfied to discretize the frequency axis with points at the BPF harmonics and points midway

between, we would use

col = 0.5Bf2 (5.5)
092 = BiD.

Along the frequency axis represented below, the simultaneous solution for co/ would find the spectral

levels for all frequencies marked by x and the solution for _ would find the levels for the

frequencies marked by e.

O .... X .... O .... X .... O .... X .... O .... X .... O .... X .... O .... X ....

0 1 2 3 4 5 frequency in BPF orders

The velocity components for the 2 pressure wave types (and the vortical waves) can be written in form

parallel to Eq. 5.3 as follows.

oo fB# U_ (x, coo+ nail) e-i(w° +r/al_)tdcoo(x,t) =
F/_--- ---Oo

v_(x,t) = 2_ fain V].(x, COo+ nBlf_) e_i(Wo+nB, f_)t dCOo
.10 "

w-_ (x,t) = 2 jofala Wf(x, coo + nB1D.) e_i(w ° +naln)t do °

(5.6)

where
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B2_-I+nSla)=aoY_,
p=0 q=0 k=---_

B2-1

v÷(x,O,o+n8,a)=aoZ Z Z
p=0 q=0 k=---_

B_ -1

2 2
/.t=0 q=0 k=---_

r COUTI.tqk ( o + nBlf2) ei[k'[T'_k(x-x_- )+toO] COS(_)

V,]_-i.tqk (% + nBl_ ) ei[k'_il-n_ (.v-x})+m_l COS(_7 -" ) (5.7)

(09o + nBl_) eitk.,ir,kr, (x-x_-)+me] sin(_7-- )W ,r
T#qk

Later, we will need to express the velocity transforms in terms of the velocity perturbations to

represent turbulence (i.e., to invert Eq. 5.6 for T = 3, 4). These can be found in the usual manner from

Eqs. 5.6 and 5.7 by exploiting the orthogonality of sinusoidal and exponential functions. For example,

the transverse velocity transform is

V;l.tq k ((.o o + nBlO) =

4rc2 RaohU ep

• _. .-.+m7,,
(R)eLr cos(_7 -- ) d'_ d._ dz (5.8)

where eu = 1 for /.t = 0 and = ½ for p > 0. i =(._, y:, -) is the fluid-fixed coordinate, v-; is the

velocity represented in the fluid-fixed frame, i.e., i_(i)=v_(i+Ut,t). The transform of the axial

velocity is the same but with {;_ replaced by zT_.

[Note that in this type of waveform analysis, the integral in Eq. 5.8 will not converge if the extent of

the velocity field is infinite in the x direction. One procedure for dealing with this is to set the

perturbation velocity to zero outside of a region given by -U'r < x < U'r where 2"c is the time for the

block of flow to pass the cascade. This guarantees convergence of the integral. When the desired

energy spectrum is found, it can be divided by 2"c to find the power spectrum. Then we can take the

limit as x approaches infinity.]

In the following, we define some non-dimensional quantities based on a representative radius R. This

is a constant for the problem and can be thought of as a scaling parameter that brings the notation for

our rectilinear representation of the fan closer to notation used in full 3D annular representations.

Thus, from Eqs. 3.13 and 3.14

k^],r,,_.=- kf(.r,_R = _1 [Mr(-6) + mMy)T- %/(-6)+ mMy) 2- fl._(m 2 + _22)]
fl._L "

with the upper,lower sign going with T = 1,2 and from Eq. 3.7

(5.9)

2rR
Ar,,_.r=_ - .do+M_I. kxr, _0"+My m (5.10)

ar

with 03 = foR/a r = (_+nC°° ) B1M t" where M t'' = D.R/a,. is the tip rotational Mach number and Mj." and

r

My are the axial and swirl Mach numbers. All Mach numbers are based on local sound speed in the

regions counted by r.
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In defining the standard wave sets, we deal with defining components and associated components.

The pressure waves are defined in terms of the pressure amplitude coefficients in Eqs. 5.3 and 5.4. The

associated acoustic velocity components can be related to the pressure coefficients by inspection of

Eqs. 3.15:

PTpqk (o9o + nBl_) = defining coefficient for pressure waves

U__pqk(o9o + nBiY2 ) _ Pra°ar [P°(-k_'ir'_A;,,k )P]:pqk(ogo + nBl_)

/\

Tpqk Praoar ATnk
k/

Wf_qk(o9 ° +nBlf2 ) _ Po (-illtrlnD) ,p,.aoar( AT,'---_k PT"gqX(ogo +nBIf2)

T=I,2

(5.11)

Thus, if P]"#qk (o90 + nBIY2) were known, the pressure field could be constructed from Eqs. 5.3 and 5.4.

In fact, in Section 6, the P]-_qk (o9o + nBl_) transforms with ranges of the indices r, T, 17, k will be

used as elements of the system state vector similar to the Fourier coefficients in the state vector for the

tone problem in Eq. 2.5.

Vortical Waves (T= 3, 4)

Since vorticity is a 3D vector, it might appear that 3 components could be specified independently.

However, because the convected field satisfies the continuity equation V ou = 0, only 2 are

independent. In fact, for the/.t = 0 case, which corresponds to 2D flow, there is only one component.

We deal with the/1 > 0 cases fh'st and define 2 families as follows

T = 3 family: has v and w components but no u

T = 4 family: has u and w components but no v

The T = 3 family is defined via the transverse velocity component in a form parallel to the pressure

wave families. Thus, the Vf_qk(o9 o + nBl_)'s are the defining coefficients (that go into the state

vector). Again, the W_qk (¢oo + nBl_2)'s are related through the continuity equation, _w/_z =- W/by.

Hence,

for/_ >0, Pflaqk (o9o + nBlf2) = 0

r o9
U31.tqk ( o + nBl_) = 0

Wfljq k (0) o -I- nBlI"_ ) = Defining component

, co ( -im IV;
W3btqk ( o + nBl_2) = laqk (o9o + nBl_)

(5.12)
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The T = 4 family is defined via the axial velocity. Thus, the U_l.tqk ((Do + nBl_)'s are the defining

coefficients (that go into the state vector). The W,_'pqk (o) o + nBl_ ) 's are related through the continuity

equation, Ow/Oz =-Ou/Ox,

for p > 0, P,_'pqt (coo + nBl_) = 0

U" (coo + nBlf_ ) = Defining component4].tqk

i" )--I "x4nk U_pq k (% + nBl_-_)
Prc/H o

(5.13)

Finally, we define the vortical waves for p = 0. They only exist for the T = 3 type. We still choose to

define these by the transverse component but now the associated component is the axial velocity via

0u/Ox = -_v/_y and the radial velocity is 0.

for p = 0, Pfpqk (% + nBl_) = 0

r CO (--m),
g3pqk( o + nBlO)=[_ _/g_qk((Do + nB1 O)

_, "x3nk }

Vf_qk (% + nBl_ ) = Defining component (5.14)

w__qk (% + nBl_) = 0

The reader can verify that the wave families defined above satisfy the continuity and momentum

equations in each of the 3 flow regions and that the boundary conditions of periodicity in ¢ and flow

tangency at z = 0 and h are satisfied.

In the above, wavenumbers for the convected waves are normalized (from Eq. 3.17) as follows

k_r3nk ^r _ -- mM y= kx4nk _ (5.15)
Mx

In the next section, we will show how the defining components established above are used in the state

vector and coupling equations.
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SECTION 6

SCATTERING COEFFICIENTS AND THE COUPLING EQUATIONS

In this section, we develop the rotor/stator system coupling equations; these match the modal output of

the stator to the modal input of the rotor and vice versa and show how the turbulence enters as a

source, i.e., excitation, for the system. This is all in terms of Fourier transforms of the acoustic and

vortical perturbations - as if they were known. Since, in fact, they are knowable only in a statistical

sense, both the turbulence and resulting noise must be treated in terms of expected values of

magnitudes of the Fourier transforms. That subject is treated in Section 7 where we show how to

compute the power spectral density of the sound from the turbulence spectrum.

In the preceding section, we developed expressions for all permitted perturbations in the 3 regions

under consideration:

Region r = 1 - upstream of rotor

Region r = 2 - between rotor and stator

Region r = 3 - downstream of stator

The waves are of 4 types:

Type T = 1 - upstream going pressure waves

Type T = 2 - downstream going pressure waves

Type T = 3 - vortical waves (first independent set based on v- velocity component)

Type T = 4 - vortical waves (second independent set based on u - velocity component)

Perturbations were expressed in Fourier expansions. If the Fourier coefficients were known, the flow

would be completely defined from Eqs. 5.3 to 5.14. The coefficients defining the waves are of the

form PTpqk (COo + nBlf_). We form a state vector of these coefficients and compress the notation for

convenience. Thus, for each region r,

A[(n, k) = plrl.tqk ((DO + nBl_)

A_'(rt, k) = Pfpqk((Do + r/Bl_"2)

A_(n,k) =Vfpqk((D o + nBl_)

A_(n,k) = U_pqk((D o + nBl_)

The ordered array of the A_(n,k)'s is the state vector

A. The n's run from 1 to a user-specified upper

frequency limit and k's run over ranges corresponding

roughly to cuton for the acoustic waves and to the

turbulence spectrum for the vortical waves. The p's,

q's, and (Do'S are not needed in the state vector

notation because they are constant parameters for

each coupling sub-problem.

(6.1)

A31 _ _

A41 _ _ B32

To help understand the structure of the coupling ROTOR

equations, consider the scattering of modes by Figure 12. Sketch toexplain rotor scattering
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the rotor shown in Figure 12. We focus on the output vortical waves (Type 3) in region 2 (to the right

of the rotor) and what contributes to them. These can be scattered into from each of the 4 input wave

types and that action is denoted by scattering coefficients as follows.

A32(n',k) = Z

n

, ,-21. , k;n,k)Al(n,k)$22(n ,k;n,k)a?(n,k)+ o32_,n,

-71 ,- k)A_(n,k)+ S31(n',k;n,k)A_(n,k)+ B2(n',k)]+S_(n ,k;n,

(6.2)

This meaning of this equation is that the Type 3 vortical waves in region 2 come from scattering of the

up-going pressure waves (T = 1) in region 2 and scattering of the Types 2, 3, and 4 waves in region 1.
The summation is on the n index since we found in Section 4 that rotors scatter on n and not on k.

We have also added B2(n',k). These are source waves that are to be prescribed as excitation for the

system. Notation for the scattering coefficients is

Interface Planes: 1 2 3

Plane {#1

Plane {#2

Plane {
#3

4
4
4

4
,d
a_
A_

4

s_ll
s_ll

[-

E

E

D

E

Inlet

/
sl_ s_J

E

E E

E E

D E

_2J 21Sz3

s3_l Sa_J
$41 21$43

_ I

0 O

E [

0 E

0 [

O I E

0 1 C

0 1 E

0 1 E

Exit

System Equations:
A=SA + B

Where:

A = State Vector
B = Source Vector

C = Coupling Matrix
Solution:

A = (1-S)IB

A_

4
4
4

6"i

+

4

.d

B_
8_
B_

B4'
i
i --

87
B 2

B_

B4_

Figure 13. System coupling matrix
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sr'r (n',k';n,k) with the unprimed indices denoting input modes scattered from and the primedTT

indices denoting output modes scattered into.

Equation 6-2 can be generalized to treat the entire inlet/rotor/stator/nozzle problem as shown in

Figure 13. Equation 6.2 can be seen as the seventh line of the matrix equation. All of the other

scattering coefficients are shown as well. Dots indicate empty elements, or no scattering. The next

sections show how the stator and rotor scattering coefficients are computed. (We ignore scattering

from inlet and nozzle in this report but expect to address it in the future.)

Computation of Stator Scattering Coefficients

The stator acoustic element consists of the stator vanes themselves and an actuator disk which

represents turning of the mean flow. The jump in mean flow properties across the disk determines

jumps in perturbation quantities via conservation of mass and momentum. In this section we first treat

scattering by the vanes and then later show how the actuator disk effect is added.

To compute scattering by the stator vanes, note that the connection between input modes and output

modes is through the upwash at the stator. Thus, we need to find the upwash associated with each of

the 4 input wave types. Then, we need to find the amplitudes of each of the 4 response modes to unit

upwash. The required scattering coefficients are formed from the 16 combinations of input and output.

The upwashes associated with various wave types follow from the wave kinematics of Section 5 and

are shown on the right in Table 1 under "Excitation." The output mode amplitudes due to unit upwash

are found using Glegg's Wiener-Hopf cascade method (as explained later in this section) and are

,, r'r (n, k'; n, k) is used for scattering by theshown on the left in the table under "Response." Notation ')TT

vanes. Its meaning is given by

A_,(n,k')" _ OTT-"r'r(n,k';n,k)A_(n,k) (6.3)

When the actuator disk is added, the coefficients will be modified and placed in the scattering matrix

with the same notation. For example, scattering of vortical waves into downstream pressure waves is

given by

A3"(n,k') _--- S3;2(n,k';n,k) A_(n,k) (6.4)

The prime on the superscript on the LHS indicates that the coefficient does not yet apply to Region 3;

this will be dropped when the actuator disk is included. This coefficient for scattering of the type 3

vortical waves (with/2 = 0) into down-going pressure waves can be constructed from elements of

Table l,

3'2 , 1.4 in: P2 A2nk' _2nk" D2nkk" m
$23 (n,k ;n,k) = c2_ ._-7T----sin 02 + cos02 (6.5)

g2 A2 Rnk" )t, k._3nk

Derivations of the excitation and response factors in Table 1 are discussed in the next 2 sections.
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TABLE 1

FACTORS FOR STATOR SCATTERING COEFFICIENTS

i Response T

2

, -1.4i7r_ 2 P2 A2nk ' _l,,k' Dl,,kk' u'nk wnk
AT(n,k )= 1 _=

g2 A2 Rnk ' ao ao

A3"(n,k,)_+l.4ircC2 P2 A_,,k'_2nk'D2nkU wnk 2 U'nk
g2 A2 Rnk' ao ao

p=0all/d

_r p

3 A_ (n,k)=
-2/ri

g-2 COS02
0_,_k% sin 0 2 + _2 cos 02 Knl. Wnk

+ o_;_k , + 0 2 , a o

r ^ ^ ^'_ , N

4 3' -2n'i ank'_c COS02 --_c" sin02 Kn k WnX

A_ (n,k')- _2cos02 _2+a_k,+02 ) ao

4

p>0

u>0

Excitation

A, £._lnk sinO,--mcosO, 3;
- - A 1 (n,k)

1.4P 2 2Alnk

A2 £._.2n_-sin02-mcos02 A2(n,k)
1.4P 2 A_.k

= r/? ,
Wnk _-z_----sln0 2 +cos0 2 A_(n,k)

ao , kx3nk

Wnk = (cosO2 ) A2 (n,k )
a o

Wn---L= (- sin 02 )A_ (n, k)
a o

Above, Dr,,_-a-"is the potential jump across the wake from Glegg's theory (see Appendix A). Subscripts nkk"

indicate input waves with interblade phase

2xm

B2

and output waves with interblade phase

m=q+nBl-_ 2

21rm r

cr" = _ , m" = q +nB l - k 'B 2
B2

Also,

and in

the upper,lower sign goes with

only on n and k (not on k').

Ar,nU = -d) + M x k((.r,,U + M ym

_r ,,k ' = _2x [ Rnk ' Sin 02 +-( fl 2m" + O)M y ) cOs 02 ]

T' = 1,2. K,,t is Glegg's vorticity factor (K(yc) in Appendix B), which depends

The wavenumbers required for vortical response are

J_c = (b / M = -kx3nk, sin 0 2 + re'cos 0 2i_nk " ^2
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Excitation Factors

Here, as an example, we show how the excitation factor for down-going pressure waves at the stator is

derived; this is the second item in the fight column of Table 1. The remaining excitation factors can be
derived in similar fashion.

The upwash at the stator due to the down-going pressure waves in region 2 is given by

W(X, t) = --U 2 (X, t) Sill 0 2 + V2 (X, t) COS 0 2 (6.6)

By using Eqs. 5.6 and 5.7, it can be shown that the coefficient of the upwash is

Wnk = ao [-U2pqk (COo+ nBl_)sin 02 + V2pqk ((0o + nBl_)C°S02 1 (6.7)

The U and V coefficients are related by Eqs. 5.9 to the P coefficient that defines the pressure wave.

When these are substituted into Eq. 6.7, the result is

Wnk

a o

^9

Po k_2n k sin 0 2 - m cos 0 2

P2a2ao A2nk p22pqk (COo+ nBl_)
(6.8)

The factor before the square brackets can be modified using p2 a2 = YP2 where y is the ratio of

specific heats (y= 1.4 for air). Using this and replacing p2_q k (coo + nBl_2) with A2(n,k) lead to

[A2 ]Wn----k- A2 kx2nk sin0---_2--mc°s02 A__(n,k)
a ° 1.4--p2 A2k

(6.9)

which is the second item on the right in Table 1, as desired. A2 and P: are speed of sound and pressure

in region 2 normalized to sea level, standard day conditions.

Response Factors
These are the factors in the left column of Table 1 and are computed using Glegg's Wiener-Hopf

cascade method. As an example, we derive the modal coefficient for upgoing waves from the stator

due to unit upwash (the first item in column 1 of Table 1).

Appendix A adapts Glegg's equations to duct coordinates and to our modal indices n, k, and /3.

Equation A-43 gives the pressure wave scattered into mode n,k" due to upwash in mode n,k as

-ire P2 a2 c2 A2nk" (?nk" Dlnkk" i[k2'""'x+m'(_-c°t] ].lIr:

Pnkk" = -if2 Wnk Rnk" e ..... cos(h) (6.10)

where we have replaced Glegg's + superscript notation indicating up/down going waves with a

subscript 1, since we are addressing upstream going waves. Upon comparison with Eq. 5.4, we can

write for the modal coefficient of the upgoing wave, at frequency co = coo + nBlf2
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-ire P2 a2 C2 A 2nk, _12k , Olnkk,
Pl%qk (0)o + nBl_-2) =

Po g-2 Rnk"
WnX (6.11)

Note that the phase in Eq. 6.11 is based on an x-origin at the leading edge. In code CupBB, origins are

shifted to the appropriate reference planes after coupling to the actuator disks.

9
In Eq. 6.11, we again apply p2 a2 = !,4P2 and replace P(_qk,(oa o + nBlf2) with A_(n,k'), leading to

A i"(n, k ') = - (6.12)
g-2 A2 RnU ao

This is the response factor giving the modal coefficients for up-going waves from the stator due to unit

upwash, It is the first item in the left column of Table 1, which was to be found. The factor relating to

downstream pressure wave response follows immediately. The response of the vortical waves can be

found from Equations in Appendix B.

Rotor Scattering Coefficients
Derivation of the rotor scattering coefficients proceeds in the same manner as that for the stator. The

I6 _oups of coefficients are formed from factors in Table 2. The 4 inputs in the right column drive the

_r'r(n',k;n,k). They are then4 responses in the left column. The resulting coefficients are denoted by _'r'r

modified by the effect of the rotor actuator disk and placed in the system scattering matrix S.
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TABLE 2

FACTORS FOR ROTOR SCATTERING COEFFICIENTS

_ Response T Excitation
2 ^2

1' , -1.4i7r(1 P2 Aln'k _l,,'k Dl,kn' Wnk wnk A2 kxlnk sin01 -mc°s01 A2(n,k)
A 1 (/i ,k)= 1 _-

gl A2 Rn'k ao a o 1.4P 2 Ai'nk

, +l.4iTrcl P2 AZn'k _2n'k D2nkn' Wnk 2 W"k -- A2 k'_2nk sin0,-mcos01 Al'(n,k)

A_(n ,k) = g'l A2 Rn'k ao ao 1"4P2 A2nk

all_LU =uzg_

( ^ ^ "_

2 , -2Jri O_n,k]/csinOi-F:2cOSOl Kn k Wnk 3
A 3 (n ,k)= gl c°s01 , _2 +_2,k +_2 , a° tl>O

m , p
Wnk £-z_---sm01 +cos01 A 1 (n,k)

ao kx3nk

_-- I pw"k - (cos0 I)A_ (n,k)
a o

u>o u>o

^ ^ |r

' ' 4 "'_k _ (_sin01)A_ (n,k)-2rci Otn,kYc cos01 __'_2sin01 Knk wnk __ _
4 A_ (n',k) = Y, c°s01 # + d z,k + _2 ao ao

Above, Dr,,,k,,, is the potential jump across the wake from Glegg's theory (see Appendix A). Subscripts nkn"

indicate input waves with interblade phase

2_m

B2

and output waves with interblade phase

m = q + nB| - kB 2

O" = 2rrm'- , m =q+n'Bl-kB 2
B2

and

where

T=l,2 wave. K,k is Glegg's vorticity factor (K(yc) in Appendix B), which depends only on n

n'). And the wavenumbers required for vortical response are

2 ^2
AT,n, k = -CO+ M x k_,n, k + Mym

_T'n'k =-_x [Rn'k sinO1 +-(fl?m" +°ar(My -Mr ))c°sO' ]

/_2 =I_M 2 and Ml is relative Mach number at the rotor and the upper,lower sign goes with the

and k (not on

Yc = _," / M1 ^ _2 ,O_n'k =- x3nk sin01 +m'c°s01 _2 = --(_2 + _2 )
C
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Combining Blade and Vane Elements with Their Actuator Disks

The coupling scheme shown in Figure 13 treats 4 acoustic elements: Inlet, Rotor, Stator, and Nozzle.

Only the rotor and stator are addressed in this report; inlet and nozzle reflection and transmission must

be treated in a separate study. Figure 14 shows the mean flow entering the fan stage axially, turning at

the rotor, and straightening back to axial at the stator. To deal with this turning, actuator disks are

combined with the rotor and stator blade rows. Appendix C derives the actuator disk equations based

on linearized equations for conservation of mass and momentum; jumps in background flow properties

cause jumps in the wave modal amplitudes.

Code CupBB models the background flow via 1D isentropic (lossless) flow equations and the standard

equation foraction of the rotor
C

A(tangential velocity) = P x A(total temperature) (6.13)
wheel speed

Ambient conditions correspond to a standard day at sea level. The user inputs inlet axial Mach

number, rotor rotational Mach number, and stage pressure ratio; the code calculates the remaining

mean flow quantities based on isentropic flow and Eq. 6.13 assuming axial flow out of the stator.

This section shows how the actuator disk scattering factors are combined with the scattering factors

just found for the blade rows to produce a combined rotor/actuator disk element and a combined

stator/actuator disk element. These are the elements that are used in the coupling matrix of Figure 13.

Figure 14 shows the rotor with its actuator disk, the stator with its actuator disk, and all of the wave

families included in the coupling scheme. As described earlier, the A's are elements of the state vector

(to be found) and the B's are elements of the source vector (to be prescribed from a turbulence model).

The A's and B's are further subscripted on the scattering indices n and k. The derivation below is

in the context of the stator but the method of combining a blade row with its actuator disk is the same
for the rotor as for the stator.

The lower part of Figure 14 shows the stator element broken down into the vane row and the actuator

disk. Scattering equations for the vane row are

m_ caa aa caa aa= J12 "12 + _'13 _3 + SfgA_ + s_ba b + Bf

A b cbaaa cbaaa ba a cbbAb 9_ O b= _22 "12 + _23 za3 + $24 A_ + _21 _Xl

A b cbaAa cbaaa ba a cbbab + B b=o32za 2 +o33za 3 +$34A_ +o 31zal

oba.o s Ag= $42 A_ w 043 _3 + + °41 Zal

(6.14)

and for the actuator disk are
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Abl cbbab cbbab= °12 _2 + °13 '-13 + Sbb A_ + sb{ A_

= o22za2 + o23,'-t3 +S + o21Zal

A_ ccb ab ¢cb ab ecc ac= o32za2 +o33"13 + s_4bA_ +o31n 1

--o42n 2 + o43n3 +S +o41nl

These can be placed into a matrix system similar to that in Figure 13 as follows

(6.15)

a;
A_

a_
ag
A1_
A_
A3_
A_
a_"

a_

a_

a_

"0 Sl%a S_; S_

C3 ....... _:

B
D @

0 D O 0

D O

D s_ s_ s_
0 Sb_ S3L_ sb,_

0 s4b_ sb_ S,_

D O 0 O

O 0
.......SGA

O 0

O O O O

S_l/' O D D

SAB .......

O O O O

o s_,_s_ s_12
S_l _......_ o

_B8

S_l _ D
S_l o B D

D O O

r_ ........................

r-]

[3 D [3

s_
O

D

O

........_CB3

s_ s£b s5b s£
o s_ s_ s_ sFi

i o sX_ s_3_ s_ Is;_

0 0 0

o
0

O O O

0 0 0

Scc
0

O O O

a_
Z_

X

4
Af

A_

A_

_A_

8;
_g

_4_
_f

_B_.

(6.16)

With the block matrix notation indicated by the shaded boxes Eq. 6.16 reduces to

A a = SAA Aa + SAB Ab +B a

A b = SBA Aa + SBB Ab + SBC Ac +B b

A c = SCB Ab + SCC Ac +B c

The middle line of Equation 6.17 can be written

(1 - SBB)A b = SBA Aa + SBC Ac + B b

(6.17)

(6.18)
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ROTOR/STATOR/ACTUATOR DISK SYSTEM

A2'A3'_ A_ T kX
o _ _ A_

1 1 "" A _ _ U -_A3, A_,A_

93, B4_ T _ 93_ A

To o
Ft

D
I D
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Y
_2 b, b ba_,_

T

,............

A
C
T
U
A
T
O
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D
I
S
K

S
A_,A_,.A_

Figure 14. Rotor/stator actuator disk system.
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and solved for A b via

where

A b = ESBA Aa +ESBc Ac +EB b

E = (1 - SBB )-1

(6.19)

(6.20)

Substitution of Equation 6.19 into the first and last lines of Equation 6.17 eliminates the scattered

waves in the middle (b) region

A a = (SAA + SAB E SBA)A a + SAB E SBcA c + B a + SAB E B h

A c = SCB E SBA Aa + (Scc + SCB E SBC )A c + SCB E B b + B c

(6.21)

or

SCB E SBA I SCC + SCB E Sac [ ScB E B h +

(6.22)

In the current application, we will not prescribe any source waves in the "b" region so that finally

lIAall[SAA.+_.S.ABE__SBA I SABESBc × B c
L SCB E SBA ] Scc + SCB E SBC A c +

(6.23)

This is the desired form for combining the stator vanes and the stator actuator disk into a single

acoustic element. The scattered waves in the region between the vanes and the disk have been

eliminated from the equations so that the input/output properties of the stator element are completely

specified by the A a and A c state vector components. To apply this scheme in the computer code

CupBB, we first compute the scattering coefficients for the vanes with uniform background flow

corresponding to region 2 (between blade rows) and place these into the S array as in the example of

Eq. 6.5. Then we compute the scattering coefficients for the actuator disk according to theory in

Appendix C and place them in array D. Next, elements of S are placed into block matrices SAA, SAB,

SBA, SBB and elements of D are placed into SBB, SBC, SCB, SCC per Eq. 6-16. Equation 6-23 is applied

to find an array to replace the old array S. Finally, sections of S are placed into the stator location of

the system scattering matrix of Figure 13. The same procedure is applied to the rotor blades and their

actuator disk to complete the system scattering matrix.
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SECTION 7

EQUATIONS FOR SOUND POWER SPECTRA

This section develops equations required to compute spectra of sound power propagating upstream and

downstream from the coupled blade rows. The development is in 5 stages:

1. Derive equations for sound power in terms of the Fourier transforms defining the standard
wave sets in Section 5.

2. Derive equations to compute those Fourier transforms in terms of the inverted coupling matrix

and the source vector elements.

3. Develop equations for the source vector expected values in terms of 3D turbulence spectra.

4. Adapt a standard turbulence spectrum (the Liepmann spectrum) to the ducted flow
environment.

5. Assemble the working equations for programming.

Sound Power Equations in Terms of Standard Wave Set Coefficients

Power associated with acoustic perturbations is evaluated according to the energy flux vector

given by Goldstein (Ref. 10).

I=(P+u'U) (p'u + pU)p,.
(7.1)

This is the instantaneous energy per unit area per unit time in the direction given by I. The perturbation

pressure, density, and velocity are p, p, and u. p,. and U are the density and velocity of the back_ound

flow in Region r. The energy flux vector is space and time dependent. We are interested in its

component in the x direction. Forming Ix = l.ix and applying p = p / a 2 lead to

Mr p2I x = (l+M2)pu+ .. + PrarMx u2 + PrarMyuv+MxMypv
Pr ar

(7.2)

for the power flux in the x direction. Mx and My are Mach number components in the axial and

tangential directions relating to the background velocity U = (U, V, 0).

Recall from Section 5 that the expressions for perturbation acoustic quantities are
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p; (x, t)

u_(x,t)

'r(x,t)_T

Bl _ _ B 2-1

=,,oXlo X X
n=---_ p =0 q=0

1

Z --k_fTnk e;'pqk(('Oo+rlal_-'d)

k=--_ P,'arA_nk

--D1

Pra,.A_,k

×e i[k._v"_(x-'_")+m¢-(¢°° +nBll'_)t] cos(_hl'lff'7 I dO)°

(7.3)

Before substituting these into Eq. 7.2, note that, in our convention, the pressure and velocity are pure

real by virtue of using 2-sided series (i.e., imaginary parts in the upper and lower halves of the n series
2 * *

cancel). Thus, p =pp, and we use pp, for convenience in the manipulations that follow.

7I-r=_rar If ,__.,'_L,'_ XXZ (I+M_) __,r ,, -k,r,, -k'_'k"
_ k _, q k " AT;,,., " " a;o,. Jr,ATL"

) )1' r.,+M r -[¢rr,,_. -m" +MvM v -m" p_. q,(Coo +nBl_)p_.,,q,k,(O2o +n,Bl_)

" Arn k )(A;r,k , " " _ A;;,,,

x e i{ (k-'r"k -k-_v"'k" )(x-xr )+(m-m')¢-[(w° +nBl_2)-(c°° +n'Bl_)]t} COS COS dOJodCOo
k n ) k n )

(7.4)

We need to average this over time and then over the space variables z and _0. For the time average,

recall that the Fourier transforms apply to a block of flow passing through the cascades in the period

-r < t < r. Outside of that time range, the perturbations are temporarily set to 0. We still integrate

over all time since it produces a Dirac delta function

IS e il(% +nBlg2)-(w°+n'&f_)lt dt = 2re ($nn"3(C°o - COo) (7.5)

This gives the energy due to that block of flow. Then we divide by 2 r to get the average energy/unit

time, i.e., power. Similarly, the average over - requires

where e_, = 1 for /1 = 0 and

eliminate all the cross terms in Eq. 7.4 with the result

1 fhcos(Plrz cos dz = app, ep (7.6)
h_o ( h

= ½ for/2 > 0. Also, the average over ¢ yields Sqq, _,._-: These operations

2 nBl_) 2_= oP_a.Z I ZZZ Fnk---_PTvq*(OOorgeP'r + d09o
" Pr r n p q k

(7.7)
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where

r+,l / (/Fnk=(l+M'_) k AT,,k , +Mx +M" " ( k:_'r"kA_,_.+My (/"),,kA_,k mA_,i. +MxMy A;,,_.-m

By applying definitions of the wavenumbers in Eqs. 5.9 and 5.10, F,,k can be reduced to

Fnk =

where E is the cuton discriminator

[ (-_ +mM y ) "gM x _]2

E (-(b + mMy )2 fl,2_(m 2 ^"= - +V")

(7.8)

(7.9)

(7.10)

This is positive for this application, since only cut on waves carry power. The T sign in the numerator

of Eq. 7.10 indicates that energy upstream travels in the negative x direction and downstream travels

in the positive x direction. This sign is dropped henceforth.

Now, since the expression for I x is an integral over frequency, we identify the integrand as the power

spectral density of acoustic intensity. (We still have to multiply by duct area and bandwidth to get

sound power.) We define the area averaged intensity spectra upstream and downstream as

_Tel.t 1 nBl_) 2Yllpq (o9o + r/nl_'_)_ p2 Z Fnk --'f-" P_,qk (O90 +
plal 1,.

p2 -7_EP 3 nBl__) 2
3 -- _ _., r.k P2.qk(COo+YIuq(o9 o + nBlff2) -

P3a3 T

(7.11)

for each independent mode sub-set defined by COo,q, and p. Next, we will find the required expressions

12 [p3 qk (COO 12for IllPlpqk_(o9o + nBlf2) and + nBlf2) in terms of the source vector elements.

Fourier Coefficients in Terms of the Coupling Matrix and Source
I 3

The terms Plpqk (COo -{- nBl_"2) and P21_qk(o9o + nBl_) are elements of the state vector developed in

Section 6. Specifically,

ellpql¢ (ogo -I- nBl_2) = A_ (n,k )

and (7.1 2)

P23pqk (ogo -I- nBI_ ) = A3 (n,k )

NASA/CR--2001-211136 43



are the coefficients for upstream-going pressure waves in region 1 and downstream-going pressure

wave in region 3. The coupling equation was shown to be

A =SA+B (7.13)

where A is the source vector, S is the scattering matrix, and B is the source vector. This must be
inverted to find A as a function of B

A = (1 -S) -! B (7.14)

In this section, we write out the equations for the desired elements of the state vector in terms of the

elements of B that relate to turbulent flow into the rotor and stator. In the following section, we will

express those elements from B in terms of the turbulence spectrum.

We treat turbulence entering the rotor and stator as the source.
vector are

1
B_(n, k) = V_t.tqk (0) o + nBt_ )

B1 (r/, k) g I ((D O + r/Ola)= 4t.tqk

The relevant elements in the source

(7.15)

which are coefficients of the 2 vortical wave types (3 and 4) in region 1 (entering the rotor) and

9

B_ (n, k) = V321.tqk((Do + nBl_)

9 9

B_ (n,k ) = U_l.tqk ((DO + nBl_ )

(7.16)

which are the same for vortical flow entering the stator from region 2. (For radial mode index/.t = 0,

the Type 4 waves are absent.) We denote the matrix of the inverted system by C where

C = (1-S) -1 (7.17)

In terms of the elements of C, the coefficients for the upstream-going pressure waves become

pllpqk (0) o + nBl_') ) Z Z {C(1,1,n,k; , , 1 ," ,, ,, 1 , ,= 1,3,n ,k )B3(n ,k')+C(1,l,n,k;1,4,n ,k )B4(n ,k )
n" k"

, , 9 " ' 9 4 ,.,...9+C(1,1,n,k;2,3,n ,k )B_(n ,k ) +C(1,1,n,k;_, ,n ,K )t_(n',k')}

(7.18)

where the B4 terms are absent in the case of /1 = 0. We will not bother to write out the corresponding
9

Il Iform for downstream going waves until the end of this section. We can not know Pr_qk (COo+ nBl_)

ingeneralbutwecan_ealwithitsexpecte_value(_rense_b_eaverage)(Pluq_.((D_+nBl_)2).

Squaring the magnitude of Eq. 7.18 results in many cross terms which we will justify eliminating. The

cross terms between regions 1 and 2 vanish because we assume the turbulence entering the rotor to be
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independent of that entering the stator. Furthermore, cross terms between wave types 3 and 4 vanish

since they were defined as independent waves sets. This leaves

(i p2)pl (COo+ nBl_) =
Tpqk

' ' * k") B_ ' ' 1" ,, -_____ZZ [C(1,1,n,k;1,3,n,k)C (1,1,n,k;1,3,n", ( (n,k)B 3 (n ,k ))
n" k" n" k*

, . .(, ,, ,,..)+C(1,1,n,k;1,4,n,k')C*(1,1,n,k;1,4,n ,k ) B4(n,k )B 4 (n ,k )

2,3,n,k )C (1,1,n,k;Z, 3,n ,k')(B_(n,k )B_ (n ,k ))+C(1,1,n,k; ' " * " " " _* " "

... . ,,+C(1,1,n,k;2,4,n ,k )C (l,l,n,k;2,4,n ,k') B (n ,k )B 4 (n ,k ) ]

(7.19)

In the following section, we will see that the n'n" and k'k" cross terms also vanish.

Source Elements in Terms of Turbulence Spectra

We will treat one of the source expectations on the right of Eq. 7.19 and then write down the rest by

inspection. Including the ne_/'_ from Eq. 7.7, we use A to denote

A= " B_(n,k )B 3 (n,k))= _" V_pqk(n,k )V_pqk(n ,k )

and we proceed by inserting the inverse transform of the V's given in Eq. 5.8.

(7.20)

4Jr2RaohUe p (fc')) e -I(kx3n'k'x-kx3"'k'x +-R-Y--_'Y )

A

and change variables via
_'=_+s

so that

Then,

-" ._ + SxX -_

-- I

y =_+Sy
--p --

=.'+S-

]r
A-

(4Jr2RaohU)2re_

(7.21)

(7.22)

(7.23)

SSS_Sf (v_(x)f:_(f(+S)) e-i[(k_3n''-kx3n't')2-kx3''t'sx+(m'-m')-}-m'_]

×c°s(-_-lc°sI_°s(_rs: )-sin(_in(Prcs: )] dycd_d:ds_dsyds'_h "

(7.24)
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The sine term will vanish in the z integration. In flow problems with no boundaries, the standard step

at this point would be to recognize the expectation of the v product as the correlation function

(i:_(_)i:_(_, +s))= R_r(s) and claim it to be a function only of the separation vector s (and not of the

position vector i ). In bounded flows this is an approximation that we assume to be acceptable since

the length scale turns out to be small (typically 2% to 4% of fan radius).

We still have to deal with convergence of the x integral. Recall that we are considering only a block

of flow that is finite in the x direction and then taking the limit as the block size increases to infinity.

For this, we employ a "top hat" function J(x) which = 1 for -Ur < x < Ur and 0 otherwise. Then
the correlation is written

Use of this function permits us to separate the separation and position integrals as follows

A +"/17
"_ 2 SSl Rlv(s)ei(k'_'3"'k'sx m -)-)COS dsxdsvds_

(4tc'RaohU) eu " (7.26)

In the first line of Eq. 7.26, we can replace the cosine with an exponential because the correlation

function is even. In the second line, the z integral yields hoe/t so that

A

i( k.'_3n'k'sx +m'sv +1 llr Sz )

2 ' ISl Rlv (s)e R- h dsxdsyds -
(4nr RaoU)'hr

, , ,, -+ • ,, _,

×Iz'__DR So___Uure -,[(k'-3n'k'-k'-3n'k',x(m-m '-R]d,r dy

(7.27)

The y: integral produces a Kroneker delta

IZxRR -i(m'-m"Ye d_ = 2rcRtSm, m. (7.28)

so that the 2 integral becomes, after applying Eq. 3.17 for kx3nk,

1 [Ur -i(n'-n') Btl2_
-_ a-Ur e U d2 = 2USn, n,

(7.29)

in the limit as r approaches infinity. With these results, A further reduces to
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...x m" ].lff .

A = (_n'n"2 ak'k'2 Ill R_,, (s)e t(kx3''k'sx+-_-sy +-_--s: )ds,c dsy ds. (7.30)

41r RaoUh

If the fluid medium were unbounded, this integral could be recognized as the 3D turbulence spectrum

from the standard form

fR_,.(s)e ik_ ds= (21r)3_,,(k) (7.31)

We assume that this is an adequate approximation for the bounded case under consideration, so that

r \ v31"tqktn ,h" )V3pqk(n"'k")/= Ra_Uh 0vv(k ) (7.32)

where the wavenumber components are

k I = k].3n,k,

k2 =mr�� R

k3 = ,u_//_h

Finally, we normalize the turbulence spectra according to

2 1
O_!v(k)= R3W1 (I)vv (K)

¢,l,u (k) = R3W2¢I,,,(K )

for the 2 turbulence components entering the rotor from region 1, and

_2u (k) = R 3W22(I)2u (K)

(7.33)

(7.34)

(7.35)

for the 2 components entering the stator from region 2. Also, we have normalized the wavenumbers

(7.36)

by R so that the axial wavenumbers

U_ 1) = kl.3n,k • R - k"lr3n'k , K_ 2) = k.23n,k , R =- £_3n'k"

for regions 1 and 2, respectively, and the circumferential and spanwise wavenumbers

K 2 = m' = q + n'B 1 - k_B2

K3 = J'/_HD (7.37)

Now we can write down the 4 required source terms. Since we only need the n" = n" and k" = k"

terms, we eliminate the Kroneker deltas. Furthermore, we drop the primes completely for reasons to

be seen below. For region 1,
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and for region 2,

- _vv (K)r W_pqk (n, k) HD cos01 a o

II I7CEp Ulpqk(rt, k ) = R (i)l,u (K)
"r H o cos01 a o

r qk(n'k) = H ocosO 2 a o

r H o cos02 a o

(7.38)

(7.39)

where Ho = h/R, M1 =Wl/ai and M., =W2/a: are the Mach numbers in regions 1 and 2, A: = aflao,

and A2 = a2/ao.

Choice of Turbulence Spectrum

Since we do not have any algebraic foma for turbulence spectra in ducted flow, we will simply adapt

the Liepmann spectrum (Ref. 11) that has been used with some success in earlier studies. Unpublished

analyses by Pratt & Whitney show that this spectrum matches wake data remarkably well. The forms

for the Liepmann spectrum are

and

¢.. (k) 2u2 5 k2 +k32 (7.40)

/l.2 [1+ (,2(k?+ k2 + 3

2v 2(5 k2 + k2 (7.41)

These are such that, when integrated over the

3 wavenumber components from _oo to +co, the

results are u-2 and v--_. However, in our application,

we use a sum over discrete wavenumbers (modes) in

the spanwise direction. Since the spanwise

wavenumbers p take on only positive values, we

must double the sum to maintain the correct integral

property. A more accurate statement of this can be

made by inspecting Figure 15. The full area would

be approximated by summing all of the cells.

However, with a single sided series, we use just the

shaded portion. For this, we take ½ the/_ = 0 term

p

Figure 15. Sketch to explain conversion of
continuous wavenumber integration to
discrete summation

and the full values for the p>0 terms. But to double this, we will actually multiply the p=0 term

by 1 and the p>0 terms by 2 and sum to obtain the desired result.
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Working Forms for Sound Power Spectra

We are now prepared to assemble the results from the above sections to obtain the forms for

programming. Sound power spectrum levels are obtained from Eq. 7.11 by multiplying by duct cross

section area 2m2h, multiplying by bandwidth Acoo = 27rBW, and dividing by the power reference:

10-12 watts. Furthermore, since we use only positive frequencies for calculations, we multiply by 2 to

account for the lower half of the spectrum. In the final results presented below, the use of primes is

changed in the notation to bring it into conformity with Section 6. Now, a primed mode order is one

scattered into and an unprimed order is one scattered from.

The result for upstream sound power is

PwRll.tq(¢Oo + n'Bl_ ) = 5.8838×1014

x ___F17,.,Z ___ C(1,1,n,k;1,3,n,k) *v,,(K)+ *m,(K)
PI c°s01 k' n k

MzAIA2 }4 _ _.. '' d)vv(K)+lC(1,1,n,k;2,4,n,k)i2O:u(K)]' '
(7.42)

Power level in dB is 101ogl0 of this quantity. A,. denotes ambient speed of sound normalized by speed

of sound for a sea level standard day. P,. is similarly defined for pressure.

The corresponding form for downstream sound power follows immediately:

PWR3q(O) 0 + #,/tOl_...2)= 5.8838×1014( R ]3 (_--_ "]
t--h-7-__)

r, , , 9 I

X{ p3MIAIA3c°s01_k, F3n'k'_n. Zk [IC(3'2'n't;l'3"_'k)-a'l'"'(K)+lC(3'2"Lk";l'4'n'k)2a'""(K)]

M2A2A3 n_ [ ' ' 2t:i)2 ] }
4 y F3k, __, C(3,2,n,k;2,3,n,k) vv(K) + C(3,'._,n ' "' "",. ; ,::,,-+,n, k )12clt2u(K)

P3 c°s02 k" k

(7.43)

The working forms for the turbulence spectra are

-_" 2L5 ] K2 + K 2
_lvv(K)=g _ _--_ sr 2 I+LZ(K 2 +K 2 +K2)] 3

1 / _- 2L5 K2 + K3 3

R(1) ^1
i = kx3nk

K 2=m=q+nB l-kB 2

K 3 = fl_/_HD

(7.44)
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for flow entering the rotor from region 1. Note that the intensity and scale for region 1 are to be used.

ep = 1 for p=0 and =2 for p>0. L is turbulence integral length scale normalized by duct effective

radius R, i.e., L = UR.

For turbulence entering the stator from region 2,

¢- / +
v 2 2L5 K 2 + K_"

[ ' }I+U(K 2 +K:_ +KT) 3

[_" 2L5/[I+L2(K?K2+K2+K_• _,,(K>:_,,_ ,_ +x__1_i

K_2) ?2= kx3n, k

K 2 = m = q +nB 1 - kB 2 (7.45)

where intensity and scale for region 2 are to be used. Under the assumption of isotropic turbulence, we
take the u- and the v-intensities to be the same.

The equations of Sections 6 and 7 have been programmed in Fortran in code CupBB. Cases that

exhibit the physical effects of interest typically run 1 to 2 hours on a 200 MHz personal computer.

However, if high frequencies (significantly beyond the spectrum peak) are calculated, the running time

can be much longer.
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SECTION 8

VERIFICATION AND APPLICATION OF THEORY

This section provides verification of the new broadband coupling theory and then presents a series of

calculated power spectra to demonstrate the capability of code CupBB and to demonstrate the

importance of unsteady coupling and flow turning. Conclusions will be summarized in Section 9.

Verification

As described in the background section (Section 2), the new theory is a combination and extension

of preceding theoretical treatments of tone and broadband noise generation. Reference 1 addressed

unsteady coupling for tone noise in a 2D environment, with turning included via actuator disks.

References 2 and 3 addressed broadband noise generation by isolated (uncoupled) cascades. Geometry

and mean flow were uniform in the spanwise direction but use of a true 3D turbulence spectrum was

enabled by Glegg's Wiener-Hopf cascade analysis. In the combined theory of this report, the

turbulence spectrum, cascade response, and actuator disk response are 3D with respect to unsteady

perturbations.

Because broadband coupling has not been treated previously in the literature, there are no test

cases for verification. However, 3 tests were executed to provide some confidence in the code. First,

note that the coupling system described in Section 6 must reduce to the tone system of Ref. 1 in the

case of zero spanwise wavenumber. This has been carefully checked so as to verify (in the special case

of p = 0, i.e., 2D waves) the coupling, the treatment of actuator disks, and frequency and mode

scattering.

The second verification was to run the new code with effects of coupling and flow turning "turned

off" and compare results with the older code (BBCascade), which does not treat coupling and flow

turning. The comparison shown in Figure 16. Ideally, the curves would be identical but there are

significant differences that must due to differences in treatment of duct boundaries. As can be seen in

the figure, the differences disappear at high frequencies but amount to about 3 dB at lower frequencies.

The low frequency increase with the endwalls may be a legitimate noise effect associated with noise

generation in a confined region. Also, it could be that the adaptation of the continuous Liepmann

turbulence spectrum for the confined environment (as described in conjunction with Figure 15) needs

to be refined. Finally, note that BBCascade considers a cascade without endwalls and without the

periodic boundary condition associated with wrapping the rectilinear geometry onto an annulus.

Without these boundaries, the radial and circumferential wavenumber spectra are continuous. In

contrast, CupBB enforces the endwall and periodic boundary conditions with the result that discrete

modes replace the continuous wavenumbers. Modal summation results would approach continuous

integration at high frequencies. In any case, it is believed that Figure 16 verifies correct behavior of

the isolated cascade application of CupBB.

The third verification was to run the new code with all features enabled and check for qualitative

agreement with test data. Results shown in Figure 17 are again for the same ADP scaled model case

presented in Section 2, Figure 6. The mode order/frequency plot in Figure 9 still applies. Recall for

that figure that the turbulence intensity and scale were adjusted to provide a "best fit" since we are

attempting to represent the fan annulus by a single representative radius via the rectilinear theory.

Because the modeling with the new theory includes more features, it was necessary to re-adjust the
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Figure 16. Comparison of old and new codes calculation for isolated cascade. BBCascade results
repeated from Figure 6. Turbulence RMS level was 2.0% of the mean velocity and the integral scale was
3.5% of the fan mean radius.

turbulence properties. Intensity was reduced from 2.0% to 1.4% and the integral scale was reduced

from 3.5% to 2.7% of radius. It was decided to match the downstream data as closely as possible and

to let the upstream calculation follow, since other sources could be contributing to inlet noise. The

match to the downstream spectrum shape is excellent, considering that the only free parameter

governing shape is turbulence scale. This shows the merit of using a 3D turbulence spectrum and a
3D cascade response function. Earlier schemes based on 2D cascade theory and correlation length

concepts don't do this well.

The significant underprediction in inlet noise should not be considered a failing of this theory.

Rather it is an indication that turbulent inflow at the stator is an unlikely source of inlet noise, now that

we have a reasonable model of rotor transmission loss. Recall that, when the isolated cascade theory

was fin'st brought on line, we were pleased with the upstream/downstream split (in comparison with

data as shown in Figure 6). This seems na'fve now that the modeling is more complete. The earlier

results ignored the effect of the rotor with the result that conclusions regarding upstream noise were

probably incorrect. For this case, trailing edge noise from the rotor may dominate in the upstream
direction.

Regarding the independent mode subsets explained in previous sections, calculations in Figure 17

were made with 2 sets of 15 frequencies. The first set was half way between the BPF harmonics and
the second set was interlaced with centers at the BPF harmonics. All of the cut on radial modes were

included. For circumferential orders, all cut on modes were included plus 2 co-rotating and 2 counter-

rotating cut off modes for each frequency. (Some Cut off modes were included between rotor a_cl

stator because they may noi decay completely before interacting with the adjacent blade row.) Since

this calculation was very time consuming, short cuts were explored as described in the next section.
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Figure 17. Calculation with fully coupled theory compared with scaled model ADP data from Figure 6.
Relative to the isolated cascade calculation, the turbulence intensity was reduced from 2.0% to 1.4%
and the integral scale was reduced from 3.5% to 2.7%

Variations in Computational Parameters

As mentioned above, Figure 17 was computed with NH, the number of frequencies in a coupled

subset, equal to 15. When NH was reduced by roughly one half (to 8), the computation time dropped

by a factor of 16. Figure 18 was generated with NH = 8, 12, and 15 to check the effect of reducing

frequency range. Even though the rotor scatters up and down in frequency, the figure shows that

calculations are accurate up to whatever frequency is included in the coupled sub-sets. Apparently,

up-scattering is more important than down-scattering. The remaining calculations is this report are for
NH=8.

An experiment was performed to determine if modal averaging could be used to reduce

computational effort. Figure 19 was generated by stepping the q index in jumps of qStep and then

multiplying the results by qStep. It can be seen that skipping every other circumferential mode

(qStep = 2) has negligible effect at all frequencies. Even skipping in steps of 5 produces good results

from the peak of the spectrum and up in frequency. Jumping in steps of 10 produces unreliable results.

This is impo(tant information since computation time goes as 1](qStep). Despite this benefit, the

remaining calculations were made with all q's. It also seems likely that radial order could be skipped

for further computational efficiency but this has not yet been verified. Simply skipping every other

radial mode and then multiplying by 2 did not provide good results.

NASA/CR--2001-211136 53



140

IVa,at,o°_t,.umboro,Frequondes,""It I I t 1

,30 ...C ..... 1t

" IOownstre"ml_ ] [ I !I _ i { [ /
/

i i I >i
_oo / :-- :WLLD::_ 1
90 r ] ..........f l ....._wL_n_I I

100 1000 1OOO0

Frequency - Hertz

Figure 18. Effect of varying NH on computed results at lower frequencies. For NH = 8, the curves stop at

3037 Hz, for NH = 12 at 4555 Hz, and for NH = 15 at 5695.

_.o...........................................[...........................i................F-T--I-i--F-T-]II _ _ 3
i !Effect of Skipping Circumferential Modes 1 f

m
0 ,

90

10( 1000 10000

Frequency - Hertz
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Importance of Coupling and Flow Turning

Figure 20 was prepared for a direct comparison of the earlier isolated cascade technology and the new

methodology with all features included. The solid curves, are the data-matched results from Figure 17

and include all of the new capability in CupBB. The dotted curves are the result of an isolated stator

calculation with CupBB. It can be seen that the full methodology increases downstream noise by

about 3 dB at all frequencies and increases the upstream/downstream split (or differential) from about

5 dB to about 10 dB.
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Figure 20. Calculations with CupBB for stator inflow turbulence. Isolated stator calculation compared
to calculaton with all features included (rotor blades and actuator disks).

A slight variation on this result is shown in Figure 21. Here we represent the stator with turbulent

inflow by the cascade plus the stator actuator disk (dotted curves). The solid curves result from adding

the rotor cascade (with its actuator disk) without changing the mean flow or turbulence at the stator.

Again the aft noise increased and the upstream/downstream split is increased.

CupBB treats rotor inflow turbulence as well. The sample calculation in Figure 22 compares the

previous stator results with noise computed for the rotor with the same normalized intensity and scale

for the turbulence. Both inlet and aft levels increase about 4 dB indicating greater radiation efficiency

by the rotor, Note the spectrum shapes for rotor and stator noise are almost the same. Of course, we

expect average turbulence intensity at the rotor face to be considerably less than at the stator face for

typical turbofans. Thus, Figure 22 does not imply that inlet noise is dominated by rotor inflow
turbulence.
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Figure 21. Effect of rotor on noise from a stator with turbulent inflow.
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Figure 22. Comparison of calculations for rotor inflow turbulence with stator inflow turbulence.
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Finally, in a form parallel to Figure 21, we evaluate the effect of the stator on rotor noise. The dotted

curves in Figure 23 are for a rotor, represented by a cascade plus actuator disk, with turbulent inflow.

The solid curves result from adding the stator (with actuator disk) on the downstream side without

changing the rotor mean flow or inflow turbulence. The effect is very strong and again indicates that

isolated blade row calculations are too simplistic for reliable fan broadband noise prediction.
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Figure 23. Noise due to rotor inflow turbulence, with and without the effect of the stator.
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SECTION 9

CONCLUDING REMARKS

Earlier methods for predicting turbulent inflow noise from fans treated rotors and stators as

isolated blade rows in a uniform background flow. This report extends that capability by adding the

effects of scattering by the adjacent blade row and turning of the mean flow by the rotor and stator.

Critical elements of the theory include: unsteady acoustic and vortical responses of rectilinear cascades

via S. A. L. Glegg's Wiener-Hopf theory, unsteady actuator disks to represent the effect of changes in

mean flow on perturbation waves, full unsteady vortical and acoustic coupling of the rotor and stator,

and turbulence represented by its 3D wavenumber spectrum. The modeling requires that geometry and

mean flow be constant in the spanwise direction. Although this is a limitation, the benefit is that the

cascade unsteady loading and acoustic/vortical response are mutually consistent and fully

3 dimensional.

In developing the coupling analysis, an important principle was discovered: Many modes and

frequencies are involved in fan broadband noise generation. In the process of reflecting back and forth

between the rotor and stator, each mode]frequency couples to many other mode/frequencies. However,

the coupling is limited to independent mode subsets each of which only communicates with its own

modes and not with the other mode subsets. This principle of independent mode subsets makes the

coupling problem tractable. If all modes could communicate with each other, computation time would

be excessive. But, by taking advantage of this principle, all of the calculations presented herein could

be performed on a personal computer.

The computer code CupBB, which embodies the broadband theory, can compute noise due to

turbulent inflow at the rotor or stator or both. Comparison of isolated rotor or stator calculations with

fully coupled calculations indicate that coupling increases the aft noise by 3 to 4 dB and increases the

upstream/downstream sound power split from about 5 dB to about 10 dB.

Based on the limited calculations presented herein, the 2 major conclusions are as follows.

1. It is unlikely that stator inflow turbulence contributes significantly to inlet noise.

2. Unsteady coupling augments noise generation to the point that it must be included in any

attempt at absolute level predictions.

The analysis presented in this report is based on rectilinear, flat plate theory. Although this has its

limitations, the 2 conclusions above should be reliable because the analysis is a fully consistent, 3D

treatment of the unsteady flow. Trends regarding effects of adjacent blade rows and flow turning are

credible. Thus, in the short term, the analysis can be used to upgrade existing isolated blade row

prediction methods. In the longer term, the principles discovered here and the coupling method

derived can be used as guidance in development of unsteady CFD methods that can represent the blade

response and turning effects more accurately.

Because of time constraints, conclusions have not yet been drawn regarding the importance of

mode trapping in fan broadband noise. The physics is modeled in the code but the computer runs

required for the analysis must be performed in future work.
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APPENDIX A

GLEGG'S CASCADE THEORY FOR PRESSURE WAVES ADAPTED TO

DUCT COORDINATES AND THE n, k INDEX NOTATION

Section 6 of this report requires forms for the acoustic and vortical responses of stators and rotors to

excitation by input acoustical and vortical waves. This appendix provides the acoustic response and

Appendix B provides the vortical response.

Glegg developed his theory in "cascade coordinates" in which the x axis is aligned with the flow

direction. In this appendix we adapt his scheme to "duct coordinates," which have been chosen for the

coupled cascade application. In duct coordinates the x axis is aligned with the duct axis, the y axis

with the tangential direction (positive in the direction of rotor rotation), and the _- axis coincides with

the leading edge of the reference vane (or blade). Also, we replace the usual interblade phase angle,

common in unsteady cascade analysis, with the n,k index notation commonly used in fan acoustic

interaction theory. Glegg's theory accounts for sweep, but, in this report, we deal strictly with unswept
blade rows.

First, we will review Glegg's theory (in cascade coordinates) and then transform his equations to duct

coordinates. As shown in Figure A-l, geometry is constant in the z direction and the background

flow is uniform: U=(W,0,0), as expressed in cascade coordinates. Airfoils are unloaded flat plates.

Cascade gap, chord, and stagger angle are g, c, and 0.

W

>

Y¢

-"'0

/

d )

_h W

C Xc

Figure A-1. Geometry and flow for
Glegg's cascade acoustic analysis (4). -,b---

Xc

The unsteady flow is harmonic in space and time with upwash given by Equation A-1

w(x, t) = Wo e i(y°xc +°tYc +vz-cot) (A- 1)

This represents a plane wave that is harmonic in time with frequency o9/2n" and upwash complex

amplitude Wo. It is also harmonic in space with xc, yc, and - wavenumbers equal to 7_, a, and v. By
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use of Wiener-Hopf analysis, Glegg derived an equation equivalent to the following for the velocity

potential of acoustic waves scattered by the cascade in response to the input wave of Equation A-1

+ _+
t_+ (x,t) = -t-_WoC2 Z _. D( _) ei[_7_.(Xc_ycd/h)+(ty-2rck)y c/h+VZ]e-iCot

-
(A-2)

where the upper/lower sign applies to upstream/downstream going waves and

M =W/a fl=d-M 2 (A-3)

s e = _/d 2 +f12h2 tanZe = d/[3h Z+'k=_cM +r?_. (A-4)

2 _.2 (V//_)2K"e = = col(aft 2 ) (A-5)

: -S,smz<+-OO+Z< - I/ ft = (ty - 2rck + tcMd)/s e (A-6)

and o-= go d + tzh is the interblade phase angle. D is the Fourier transform of the discontinuity in

potential across the blade and wakes (in the form of an infinite product) and is the major result of

Glegg's derivation. We adhere to Glegg's notation closely although we use k for the scattering index

where Glegg used m, and 0 for stagger, where Glegg used _, and co for radian frequency where Glegg

used a¢. Also, the D function of this report is non-dimensional; to obtain the D function of Glegg's

report, multiply the non-dimensional version by WoC2.

The velocity, pressure, and density perturbations associated with the acoustic

obtained from Equation A-2 via

u = V¢ p -- -p,.D¢ / Dt p" = p / a 2

wave can be

(A-7)

where p,. and ar are the ambient density and speed of sound in a region of the flow denoted by the

subscript r. This leads to the following form for pressure in the scattered waves

p+(x,t)=+ ircp"w°c2 _ (co+W _._. )_. D(&_. ) ei[_;t_(x<-ycd/h)+((r-2trk)yc/h+V:]e_iCo t (A-8)

flSe k=_..oo _lc2-fff

The formulation above gives the acoustic waves scattered by a cascade for a single planar wave

input per Equation A-1. Scattering index k runs over an infinite range but, as usual in this kind of

formulation, only a finite number of waves are cut on (propagate undiminished); the remaining waves

decay exponentially and, thus, carry no acoustic energy. Cuton is governed by the argument of the

square root X/to2 - f2 ; when the frequency is high enough, the argument is positive and the waves are

CUt on.

To apply Glegg's theory in duct coordinates (as used in the main body of this report), we

transform the exponential in Eq. A-1 to
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e i(kxx+ky y +v z-cot ) (A-9)

where x is the axial duct coordinate and the tangential duct coordinate is y=R ¢. Furthermore, to deal

directly with circumferential modes, we recognize that kyy=md?. This, with ¢ =y/R, gives

ky = m/R (A-10)

and the working form for the exponential in this appendix:

e i(k*x+m¢+vz-cot) (A- 11)

Later on, we will find expressions for Se, _'_, 2._, and x/K_ - f2 in terms of /,;_,m, and ¢o.

Since the analysis of this report tracks scattering by the rotor and stator, we need a notation that

includes the rotor and stator scattering indices. Consistent with the presentation in Section 4,

circumferential mode order is indexed on q, n, and k via

m = q +nB 1 - kB 2 (A-12)

where n is the rotor scattering index, k is the stator scattering index, and q is the mode offset index.

Axial wavenumber, with our n, k subscripts was given in Eq. 5-10

/

--F ^ 2 /-- fl _ (n' +0 2 )
JR/3;L "

(A-13)

where we have normalized frequency by radius and speed of sound

and spanwise wavenumber by radius

(oR
o3 = _ (A-14)

a t .

=vR (A-15)

The reader can verify that Eq. A-13 can also be obtained from Glegg's wavenumbers by coordinate

transformation as in the following section.

Stator Scattering

Stator

, X

Duct Axis

The connection between Glegg's cascade coordinates and our

duct coordinates is a simple rotation about their common : axis

as shown at the left. The transformation is given by

X = Xc COS02 -- Yc sin 02

Y = Xc Sin02 + Yc COS02

and (A- 16)

x c = xcosO 2 + ysinO 2

Yc = -xsin02 + Y c°s02
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These equations are shown for the coordinate transformations but apply to transformation of the

wavenumbers as well. Note in Equation A-2 that the axial wavenumbers are -A,/_. Hence, from

Equation A- 16,

+ I77= -k_-_.nkcos 0 2 - -- sin 0 2 (A- 17)
R

where we have included an n subscript A,+k to help track scattered waves. This leads to an alternative

form for the effect of the convective derivative in Eq. A-7 09 +W2_k (times -i)

or

co + _. = co - W(k-(.n_. cos 02 + sin 02 ) = - (-& + M x k.-_.nkR+ My m) (A-18)

co+W,;t,ff = ar +--_- An_ (A-19)

+
where A +k = -do + M x k-(nk R + My m is the same as defined in Section 5.

We can also apply the transformation of Eq. A-16 in the reverse direction to verify the form of the

tangential wavenumber in the duct system derived from Glegg's forms. Note in Eq. A-2 that the Yc

wavenumber in the cascade system is 2n-+ttan02 + (o" - 2Jrk)/h . Thus,

n"_z=-_ksin02+( 2n_ tan 02 "tR °" - 2n'k ) c°s02h

or, in terms of vane gap, g2

(A-20)

m cr - 2irk

_-=k v - (A-Z1)
" g2

since h g cos0. This is the well known form from Smith's theory (Ref. 7).

required below is easily derived

Se = fix g2

where

Another expression

(A-22)

fix = _ (A-23)

To deal with the square root in the denominator of Equation A-2, we substitute definitions from

Eqs. A-3 to A-6 and re-arrange to find

_/K 2 _ f2 = 1 _(-do +mM y )2 2 2-- -fl,(m +¢2)
R flflx

(A-24)

The square root on the right side is the discriminator for cutoff.

special symbol

It appears frequently so we give it a
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Rnk = _/(-0)+rnmy)2 - 1_2(m2 +172) (A-25)

Then,
/ _ ,..b 1
X[Ke- f_ - Rnk_ (A-26)

Rfiflx

A convenient form for _ can be developed by similar manipulations. It must be treated with

some care because the definition implies a square root of a square root, where the branch must be

defined in the case of cutoff. From the definitions in Eqs. A-3 to. A-6, we force the following form

_-_: --/_K 2 _(_ff )2 =/_/K 2 _ f/2 + f/2 -(F]_ )2 (A-27)

Insert the definition of r/_: to get

_- =fl_/(K2- f2)+ f2-[f2sin2_ e

and collect terms to find

(A-28)

or simply

_. =fl_/(K2-_) sin2Ze+-24K2-_ sin2"e fkcOSXe +f 2c°s2Ze

Again we add the n

_- = fl(x[K2- f 2 sinXe+ fkcosZe )

subscript and non-dimensionalize on R

(A-29)

(A-30)

__ =_+k /R (A-31)

Then, by substituting definitions from above, we find the non-dimensional form to be

+_ 1 R
_nl," -- "-"_4- I nk sin02 + (] _2m + &My)COS02 ] (A-32)

/J;

In obtaining a working form for the scattered acoustic pressure, we need to distinguish clearly between

input waves and output waves using our " n, k " notation. We will use unprimed indices to indicate

input waves and primed indices for output waves. The general form for mode order of waves input to
the stator is

m = q + nB 1 - kB 2 (A-33)
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where q is the mode offset index, n relates to scattering at the rotor and k relates to scattering at the

stator. Interblade phase angle of the input waves is related to mode order by

Thus, in the " n, k" notation,

2/rm
o- = _ (A-34)

B2

27r
cr = @Z_(q +nB l _ kB 2 )

B2
(A-35)

We temporarily denote the scattering index (of the output waves) as k': In Glegg's (and Smith's)

scattering theory, the scattering index appears only in combination with the interblade phase angle (of

the input wave) as o- - 2ztk'. We can relate this to the circumferential mode order of the output wave

via

o" - 2n'k" = 2n'[q +nB 1 _ (k + k")B 2 ] - 2zcm" (A-36)
B2 B2

where we have defined

m" = q +nB 1 - (k + k")B 2 (A-37)

+

We modify our notation for Glegg's D function to Dnk k, which indicates input mode n,k and output

mode n,k: When we put all of this together, the adapted form for the pressure waves becomes

,_ + ^+ . D +- . i[k_.,,,k+k.x+m'_+vz-r.ot ]
p-+(x,t)= gircp"a"c2 Wnk _ An'k+k'_7'k+k n,_-,k+_" e (A-38)

g2 R k'=-_ Rn, k +k"

Since the sum runs over all values of k'; it can be re-indexed via k" = k + k" with the result

A + , P-+, D + ,
p±(x.t) =  iJr 0r a,.c2 ,k ,kk

g2 R k'=--_ Rnk"

ei[k _.t,x+m'¢+v z-cot ] (A-39)

For the duct simulation in the main body of the report, the endwall are at z = 0 and z = h and the -

dependence of the upwash is given by cosines as in Eqs. 3.10 and 5.7. Of course, cosines are linear

combinations of Glegg's upwash form in Eq. A-1

w(x, t) = wo ei(Y°xc+ayc-°)t) cos(if@) (A-40)

where 11 is the radial mode index running from 0 to oo. Now Eq. A-39 can simply be modified to read

Anl., (n k e,tl,';.k'x+m¢-cotl
Dnkk' COS( ) (A-41)p+(x,t)='giXPr a,.c 2 + ^+, + ' + "

g2 R Wnk k'=--_ Rnk"
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This canbewritten as
oo

p±(x,t) ,_, 4- ,= Pnkk

where Pnkt-" is the form used in Section 6 to develop the system of scattering equations.

"g i_r pr ar O2 • + _+ _+ , ± ,

+ . Ank'gnk'l-)nkk" et[k,,k'x+mq-Wt]costla,,-_,__,"""= Wnk
P,ll,_ g--2 Rnx" h

We have defined c2 = c2/R and g2 = g2/c2 •

(A-42)

(A-43)

Rotor Scattering

Coupling between rotor and stator is done in the stator reference frame at mode order m = q +

nB1 - kB2 and frequency coo+nBi£2. Thus, the input order and frequency for the rotor are the same as

for the stator problem. However, to apply the cascade theory, we must transform the input to the rotor

frame where the mode order stays the same but frequency shifts because of rotation. Mode order m

results in interblade phase angle

2n'm
G = _ (A-44)

B1

Consider the kinematic phase of the input wave

gt = m_ - cot (A-45)

Transformation to the rotor frame via ¢ = ¢, + .Qt gives

lit = met - (09 - mf_ )t (A-46)

The rotor scatters mode order on the n index, so we denote the output wave modes as

m" = q + (n + n")B 1 - kB 2 (A-47)

However, in the rotor-fixed frame, scattering does not change frequency; hence kinematic phase of the
scattered waves becomes

lit" = m'¢r - (co - m_ )t (A-48)

. Thus, frequency in the rotor frame becomes

(O r = CO -- m_ (A-49)
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or, in normalized form

03r = d) -mM r

Axial wavenumber for the rotor can be obtained from Eq. A-13 by replacing 03

(My-Mr).

• -'[ ]kxnk R-fl_- Mx[-cbr + m(My -M r )]T- _/[-03,. + re(My-M r )]2 _ fl_(m 2 +_72)

However, it can be seen from Eq. A-48 that

-(b,. + re(My - M r ) = -& + mM y

and axial wavenumber reverts to the form used for the stator in Eq. A-13

except that now, of course, Ze
and normalize on R as follows

(A-50)

by 03,. and My by

(A-5!)

(A-52)

R/_2 " M x (-cb + mMy ) • -03 + mMy )2 _ ft.2 (m 2 + _22 ) (A-53)

This is as it must be since the wavenumbers are related to physical lengths of the waves that would be

the same in any coordinate system. A similar approach shows that _/K: - f_ has the same form for

the stator, i.e., _/K2e-f 2 =Rnk/Rflfl x where, as before

Rn_. = \[(-03 + mM y )2 _ f12 (m 2 + 172) (A-54)

The derivation for _',_ proceeds the same as for the stator down to Eq. A-30:

applies to rotor geometry and flow. We add the k subscript for clarity

_'+ = _t+k / R (A-56)

Substitution of the appropriate definitions leads to the following as the normalized form for the rotor

_';k^+="2"5-,1Ft.Rnk Sin01 --+(]_?m + 03r(My - M_-))cos 01] (A-57)
/J;

where again the upper/lower sign goes with the up/downstream-going acoustic wave. Here,
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= l- M2 -(My - MT)2 (A-58 

is related to the relative Mach number at the rotor.

As stated above, interblade phase angle for input waves is

2/rm
cr = _ (A-59)

Bl

where m for the input wave is still m=q+nBl-kB2. We temporarily use n" as the rotor scattering

index. Then the factor in Glegg's equations containing the scattering index becomes

Here we have defined

2zr 2trm"
cr + 2zrn" = --[q + (n + n")B 1 - kB 2 ] = _ (A-60)

B1 Bl

m" = q + (n + n")B 1 - kB 2 (A-61)

The pressure in the rotor flame can now be written

+ +tltPrar c2 + + " " + "_. oo An+n',k (n_+n ,k D - x+m (_,.+vz-o),.t]
p- (x, t) = Wnk _ n,k,n+n e6ki:,n+,-,k

g l R n'=--_ Rn + n', k

(A-62)

We re-index this via n'=n+n" and return to the stator flame via _,. = ¢ -12 t to find

+ +t;'r Pr ar c2 ,,o +- A-;'k#'k D.k,,'
p- (x, t) = wnk

glR n'=--_ Rn'k

ei[k_ ,kx +m'(_+v z-cot] (A-63)

As with the stator scattering equations, A+,k gives the effect of the convective derivative. This is the

same in the rotor and stator frames since, by definition, it is the derivative "following a particle.'" The

equivalence can be seen in our notation as follows. The convective derivative in the rotor frame

produces

--=D" i -o9,. + U"k +"xnk + (V -D.R) (A-64)
Drt

and in the stator frame

-Dt't -
(A-65)

These are the same since O r = CO -- m'f2. In a form parallel to Eq. A-40 for the stator waves, we write

p+ (x,t) _ + ,= Pnkn (A-66)

n r--.._oo

where
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Pnkn" - Wnk
g--I Rn'k

• + •

et[kxn,_,x+m _+vz-wt] (A-67)

For the upwash in a ducted system we again use Eq. A-40 so that Eq. A-67 becomes

+_ -viJrp,. ,,,._1 A,,_'k¢kk D,,_.,,,
Pnkn" = Wnk

g--1 Rn'k
ei[k._.'kx+m'(_-cot] COS(ti nZ )

h
(A-68)

This gives the scattering by the rotor represented in the stator reference frame. It is the desired form

for setting up the scattering equations in Section 6.
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APPENDIX B

GLEGG'S CASCADE THEORY FOR VORTICAL WAVES ADAPTED TO

DUCT COORDINATES AND THE n, k INDEX NOTATION

This appendix develops equations needed in Section 6 for vortical waves shed by a cascade due to

excitation by both acoustic and vortical waves. Results are provided in the contexts of both stator and

rotor.

Glegg has extended the Wiener-Hopf theory of Ref. 4 to include vortical response (via a personal

communication). The output velocity perturbation can be written in a series over the scattering index k
as follows

oo

V(X,t) = Z Yk ei(ycxc+ayc+v:-°gt)

k_--_

where xc and Yc are Glegg's cascade coordinates (x and y in his notation) and

associated wavenumbers (corresponding to convection).

(B-l)

Y c and a are the

)'c =% (B-2)

o_ = (or - 2zck - Ycd)/h

and v is the z wavenumber. Glegg's result for the velocity vector amplitudes is

where

-2rciK(Yc )WoC (aYcic + (2jc + otvk c )
Vk =h(r2 +0_ 2 +v 2)

(B-3)

(B-4)

_-2 = _(_,2 + V 2 ) (8-5)

is represented in duct coordinates via Eqs. A-16, the resulting x, y, z components are

(B-6)
-2lriK(y c )_bc

ut = h(72c +a 2 +V2) (a_'c COS0--( 2 sin0)

-2rc iK (y c )WoC

vk = h(y2 +a 2 +v2)(aye sin0 +(2 cos0)

-2rciK(Yc)_bc (av)

w,k. - h(yZc +a 2 +V 2)

When Vk

(B-7)

03-8)
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Stator Waves

For the vortical waves, we apply the strategy already developed in Appendix A for pressure waves.

Mode order of the input waves is

with associated interblade phase angle

m = q +nB l - kB 2 03-9)

2_/77
a = 03-10)

Be

Since the stator scatters on the k index, _¢e write the mode order of the scattered waves as

m" = q +nB l - (k + k')B 2 (B-11)

Then the yc wavenumber can be expressed in terms of duct coordinates wavenumbers via Eq. A-16
with the result

m

_n,k+k" = -kx3n,k +k" sin02 + R cos 02 03-12)

Now the velocity perturbations controlling upwash (in the duct coordinate system) are

u(x,t) -

and

v(x,t) =

-2rciK O'c )

h/c
,_ an,k+k,_ c COS0 2 __'2 Sin0 2

Wnk Z 2 2

k "=--_ }/c + t_n ,k + k * +V2

ei(kx3n,k+k,x+m'q) +V z-COt) 03-13)

_2rciK(Yc) _ an,k+k,y c sinO 2 +(2 COSO 2 i(kx3,,,k+k'x+m'¢+vz-Oat)

h/c Wnk Z 2 2 V2 e 03-14)
k'=--_ )tc + _n,k+k" +

Eqs. B-13 and B-14 are in a mixed notation, using wavenumbers from both the duct system and the

cascade system. This turns out to be convenient for coding.

Again, we shift the k" index via
stator

and

where

k'= k + k" to arrive at the final forms for vortical waves shed by the

Unk k, --

Vnk k, =

-2rciK (}_c )

h/c

-2rciK(y c )

h/c

oo

u(x,t)= _ Unkk" 03-15)
k'---_,

v(x,t)= '_ Vnkl,." 03-16)
k r_--°°

O[nkQ" c cos 0 2 -- _'c2 sin Oz ei(k_.3nk,X+m'qa+vz-wt ) 03-17)

r2+ k,+v .

O_nk,Y c Sin 0 2 + (2 COS 0 2
U%k e i(kx3nk'x+m'O+vz-tOt) (B- 18)

),2 + tX2k, + V 2
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As the notation implies, these represent scattering by the stator of an n,k input wave into an n,k'

output wave.

Rotor Waves

Here we find forms analogous to Eqs. B-17 and B-18 for scattering by the rotor. Input waves have

mode order m = q + nB¢ - kB2 and frequency 09 in the stator coordinate system, Mode order m

results in interblade phase angle

27rm
o- =_ 03-19)

Bl

Consider the kinematic phase of the input wave

qt = me - cot 03-20)

Transformation to the rotor frame via ¢ = _b,.+ g2t gives

Ill = mOr - (co - mO)t 03-2 1)

The rotor scatters on the n index, so we denote the output wave mode orders as

m" = q + (n + n")B 1 - kB 2 03-22)

However, in the rotor-fixed frame, the frequency does not change so that the kinematic phase of the

scattered waves becomes

Ill" = m"fb,. - (co - mf_ )t 03-23)

Then the a wavenumber is

w

a • =-k - sin01 +-_--cos01 03-24)n+n ,k x3n+n ,k

and the relevant velocity perturbations (in the rotor frame) are

-2rciK(Yc) _ o_ . YcCOSOl-_2 sinO1 ei(kx3.+ .,k x+v:+_" )
n+n ,k 03-25)u(x, t) = h/c w"k z -..-5--- __.i

n =---_ _/c +O_n+nW, k +V

and

_2iriK(y c) _ ot . sin 01 + ei(kx3_+n.,k x+vz+_/') (B-26)v x,t = h/c .+. ,k 2 cos01
n =---_ _/2 +O_n+n,,k +V 2

Transformation back to the stator frame yields

IIt" = m"gp - (09 + m'_ - m_ )t 03-27)
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We shift the n" index via n" = n + n" to arrive at the final forms for vortical waves shed by the rotor.

Frequency becomes (Or = o9 + (n'- n)_ and

and

u(x,t)= _ unk n, 03-28)
n'---_o

oo

v(x,t)= _ v,_t, _,
r/¢_-oo

(B-29)

where

link n, --
-2rciK(yc) an'_" Yc c°s0l -(c 2 sin01

2
h/c _,2 + O_n,k + V 2

Wnk ei{kx3,{k x+m'_+vz-[°9+(n'-n)BlI2]t} 03-30)

Vnknp --
-2rciKQ/c) crn'k Yc sin01 +(c 2 COS01

+ +v
Wnk e ilkt3n'kx+m'_+vz-[w+(n'-n)Bl_]t}. 03-31)

And here the notation indicates scattering by the rotor of an n, k input wave into an n; k output wave.

These forms are adapted to the coupling analysis in the main body of the report.
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APPENDIX C

ACTUATOR DISK THEORY

In Section 6, equations were derived for the rotor and stator as scattering elements. For example, the
stator element consists of 2 sub-elements: the vane cascade in uniform flow and an actuator disk whose

role is to account for changes in the mean flow that affect the acoustic environment. Section 6 gave

the derivation for the cascade scattering and showed how the cascade is coupled to the actuator disk;

this appendix provides the derivation of the actuator disk equations for application in Section 6.

The actuator disks in the scattering theory account for turning of the mean flow at the rotor and stator

through conservation of mass and momentum. In the conservation equations, the flow quantities are

written as sums of steady and perturbation (or unsteady) parts. When the steady and unsteady parts are

separated, the steady flow is considered to be prescribed or known from a separate aerodynamic

analysis. The steady flow provides coefficients for the unsteady equations so that jumps in the mean

flow cause jumps in the perturbation flow. The jumps are effectively modal reflection and

transmission coefficients that can be found by inverting a linear system.

There are 4 wave types:

T=I:

T=2:

T=3:

T=4:

Upstream-going pressure waves

Downstream-going pressure waves

Vortical (downstream-going) waves

Vortical (downstream-going) waves

and 4 conservation equations:
Conservation of mass

Conservation of axial momentum

Conservation of tangential momentum
Conservation of radial momentum

These are satisfied on a mode-by-mode basis using the standard wave set from the main text. Each of

the 4 wave types as input scatters out 4 wave types. Thus, whereas the cascades scatter on mode order

and wave type, the actuator disks scatter only on wave type. The actuator disks do not scatter on mode

order because they have no variation in geometry in the tangential direction.

In the following sections, we apply the conservation equations, one at a time, by linearizing them and

applying the standard wave sets from Section 5. These lead to 4 by 4 matrix systems for each

circumferential mode order (each n, k combination) that are solved by inversion.

CONSERVATION OF MASS

For conservation of mass, p u is matched on both sides of the actuator disk:

(pu) a = (pu) b

We write this in terms of steady and unsteady parts (with the tilde's):

(C-l)

NAS A/CR--2001-211136 77



(Pa -'1-Pa )(Ua + Ua ) = (Pb + Pb)(Ub + Ub) (C-2)

and focus on the first order unsteady terms, which become

U_
Pa Ua + S__ /3a

a a

after applying /3 =/Sa 2 . Now, we define

Ub

= Pb_b + a7/3b
(C-3)

Ca -aO +%/3a ]
--- Pa_a

Po aa

(C-4)

for matching at the actuator disk with a similar form Cb for region b. The normalization via ao/Po is

for convenience, ao and Po are reference values for the sound speed and ambient pressure which will

drop out of the formulas later.

We interpret Eq. C-4 to apply on a mode-by-mode basis and express the perturbation quantities as the

sum over all wave types. For example, the contribution of the upstream-going pressure (Type 1) in

region a is denoted by the coefficient A], which is stands for the defining pressure component

A_(n,k) in Eq. 6.1. The contribution from the associated axial velocity component in Eq. C-4 is

proportional to A_ via the second line of Eq. 5.11.

For /z = O:

a°E ]_ +"'x Po A_
Ca=-'_o Pa Paaa _ A_n k aa

ao[ ]+--_o Papaaa( Aank +-_a p° A_

ao[ ( I]--Fll a
--+ Paao
Po [, kx3nk )J

(c-5)

where the first line comes from the upstream-going pressure wave, the second from the downstream-

going pressure wave, and the third from the vorticity wave. Because we are matching on a mode-by-

mode basis, we have dropped the n,k subscripts, the exponential, and the cosine, which are common to

all terms.
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For /z > O:

+--
ao Po -kx2nk + "" x Po A_+-- Pa-- --
Po Paaa [ A_nk aa

+[0]a]

+"° [p.ao]Ag
Po

(C-6)

All of the matching is at x = 0; reference planes are shifted later via exponentials. We compress the

notation and write Eq. C-4 as

where

For p = 0

C a = ClaA_ + C2aA _ + C3aA_ + C4aA _

Cla = a° [ -£alnk t- M a ]
aa[ Afnk

C2a = ao [-ka2,,k + M. a]
aa L A_nk

Caa =_pa(ao l -rt.._.__._l
Ca

Po l, aa ) kx3nl_

(C-7)

(c-8)

(C-9)

and for/.t > 0

C3a = 0

(C- 1O)

where 7, the ratio of specific heats, entered from )'Pa = Pa a2" The same argument leads to the

conserved quantity on the b side of the actuator disk (for/1 > O)

C b = Clb 4 + C2b Ab + C3b Ab + C4bA _ (C-11)

Now we equate Co and Cb. Furthermore, we identify the 4 waves approaching the actuator disk from

each side as input waves and place them on the fight hand side of the equation and the 4 waves leaving

the actuator disk as scattered waves and place them on the left side. The input waves are the upstream-

going pressure wave on the b side and the downstream-going pressure wave and the vorticity waves on

the a side. The scattered waves are on the upstream-going wave on the a side and the downstream-

going pressure and vorticity waves on the b side.
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ClaA_ -C2b Ab -C3b Ab -C4bA_ =Clb Ab -C2aA_ -C3aA_ -C4aA _ (C-12)

This (or the corresponding equation for/3 = 0) is the first of the actuator disk equations and represents
conservation of mass.

CONSERVATION OF AXIAL MOMENTUM

We treat conservation of axial momentum in similar fashion. The unlinearized conservation equation is

Lsina m + (p + p U2)a = (p+ pu2)b (c-13)

where the first term is the axial component of loading on the disk. The critical step here is to separate

the total loading on the blade row into the steady part, which is handled via the actuator disk, and the

unsteady part, which is handled via unsteady cascade theory. Then, when we express the variables in

Eq. C-13 in terms of steady and unsteady parts, the unsteady loading (on the actuator disk) is by

definition equal to zero and the first order perturbation equation is

(1 + (M a )2 )[_a + 2PaUaua = (1 + (M.b) 2 )Pb + 2PbUbUb (C-14)

We define

Fa =--1 [(I+(M a)2)/3 a+2paUau a]
Po

(c-15)

and expand it in the 4 wave types, as before

G = FI,,A +F2aa + F3,,A + r4aag (C-16)

where

for/.t = 0

and for _ > 0

" Fla = [1 + (Ma)2]+. 2Ma( -f:alnl"). A a
Ink

Fga. =[l+(Ma)2]+ 2Ma( -_a2nk(A_,I," )

F3a =9'vPaa°Ma[-. x ^a--"""_l]
Po aa kx3nk

F3a =0

= 2j, ---- _vJxF4 a , Pa ao ,,,a
Po aa

(C-17)

(c-18)

(C-19)
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The equations for the b side of the actuator disk are the same with b's substituted for the a's. By using

the scheme described above for identifying source waves and scattered waves, the equation for
conservation of axial momentum becomes

FIaA _ - F2bA b - F3b Ab - F4bA _ = FlbAbl - F2aA _ - F3aA _ - F4aA_I (C-20)

CONSERVATION OF TANGENTIAL MOMENTUM

The unlinearized equation for transverse 0' direction) momentum is

-L cos a m + (p u v) a = (ptt V)b (c-21)

Using the same arguments as in the discussion of axial momentum, the first order conserved quantity
can be written

Ga =-_o [PaUa_-'a + PaVaua + MaaM)apa]
(C-22)

or, in terms of the 4 wave types, as

where

for//= 0

G a = Glam _ + G2aA _ + a3am_ + a4aA _

I --/71 ) aGIa=M a _ +My
Ink

(-°)aGza = M._ _a + M_.
_a2nk ) "

( ^a

-kxlnk

Agk
• ^

a

-kx2nk

a a

+MxMy

a a

+MxMy

(C-23)

(C-24)

(o25)

and for p > 0

G3 a . Pa ao [ ,.a ]
= _"P7 oZ Llv*x

G40 ='_oa_a° [My]

(C-26)

and the conservation equation for tangential momentum has the same form as the other 2 conservation

equations

GIaA _ -G2b Ab -G3bA _ -G4bA _ =Glb ab -G2aA _ -G3aA] -G4aA _ (C-27)
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CONSERVATION OF RADIAL MOMENTUM

This, the 4th conservation equation, is only applied for/.t > 0, where there are 4 wave types. The
unlinearized equation for transverse 0' direction) momentum is

(p u w) a = (p u w)t, (C-28)

Using the same arguments as in the discussion of axial momentum, the first order conserved quantity

can be written PaUa f_'a" We define

H a =l--_-[PaUa_'a] (C-29)
Po

or, in terms of the 4 wave types, as

where

H a = HIaA _ + H2aA _ + H3aA _ + H4aA _ (C-30)

Hla = M a [ --i ldrC/H D

II -il_:/ttD

H2a = M a [ Agnk

. Pa ao A,_a[ -im ]
H3a = 1, _--lvi x

Po aa [ [d_-/"H D J

H 4a = [_lvl ,_.I __
Po aa " LIJrC/HD J

(O3i)

and the conservation equation for radial momentum has the same form as the other 3 conservation

equations

nlaA_-n2bAb-n3bAb-H4bA_=nlbAb-H2aZ__ -H3aZ]-n4aA_ (C-32)

SOLUTION OF LINEAR SYSTEM

By "solution" here, we mean finding the scattered waves for specified input waves.
assemble Eqs. C-12, C-20, C-27, C-32 into matrix form

F z' l"Cla -C2b -C3b -C4b A_ ] CI b -C2a -C3a -C4a

Fla -F2b -F3b -F4b Ab ]=/FIb -F2a -F3a -F4a A_ I

G Io-G2b-G3b-G4b A b] I Glb-G2a-G30-G4a Zg I
nla -n2b -n3b -Hnb" .A_ J Lnlb -n2a -n3a -naa" A_ J

To this end we

(C-33)
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Solutionto thisequationis

zF

A b

A_

_A4b_

or simply

-CI a

Fla

Gla

Hla

-C2b

-Feb

-G2 h

-Hzb

-C3b

-F3b

-G3b

-H3b

A b

A_

_A,__

-C 4b

-F4b

-G4 b

-H4b

-KI 1

K21

K31

K41

Clb -C2a

FIb -Fza

GIh -G2a

Hlb -H2a

KI2 KI3 K14

K22 K23 K24

K32 K33 K34

K42 K43 K44

-C3a

-F3a

-G3a

-H3a

-- °

IA,o

!

A a
- 4.

-C 4a

-F4a

-G 4a

-H4a

A_

A;

.Ag

(C-34)

(c-35)

APPLICATION OF SOLUTION

The objective of this analysis is to create rotor and stator acoustic elements that can be represented in

the coupling system of Figure 13. For example, when the stator cascade (with uniform flow

corresponding to region 2) is combined with an actuator disk at the trailing edge to turn the flow from

the 0 direction to axial, the result is the stator acoustic element. This is done by using Eqs. 6-13 and

6-14, which amounts to 4 equations for the input/output behavior of the actuator disk, and a similar set

of 4 equations for the input output behavior of the stator cascade. Setting the output of the cascade

(on the downstream side) to the input of the actuator disk (on the upstream side) and the output of the

actuator disk to the input of cascade permits us to eliminate 4 equations. The result is Eq. 6-22 which

represents the input/output characteristics of the combined stator element.
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APPENDIX D

LIST OF SYMBOLS

al., a 0

Cl ,C2

g
h

J
k

Ill

n

P

q
l"

t

H, V, W

x, y, z

Xc, Yc, z

14"

speed of sound in region 1-, speed of sound on standard day at sea level

chord of rotor and stator cascades

cascade gap

duct height in main part of report, gap perpendicular to blades in Appendices A and B

index for counting frequency from one mode sub-set to another

scattering index for stator
circumferential mode order

scattering index for rotor

pressure
mode offset index

subscript (or superscript) for region (see Section 5). Also denotes rotor.
time

axial, tangential, and radial components of perturbation velocity

coordinates in "duct system" (x axis aligned with axis of rotor rotation)

coordinates in "cascade system" (Xc axis aligned with airfoil chord and mean flow)

upwash velocity component

B_-(n,k)

B1, B2

D

E

F,,k

tip
I

K

L

Mx, My

)

Pr

R

sr'r
)

T

U

V

W

= ar / ao

modal coefficient in state vector. See Section 6. T is wave type,

n and k are the rotor and stator scattering indices.

modal coefficient for source vector (related to turbulence in Section 7).

Number of blades in rotor, vanes in stator

Glegg's potential jump. See Eq. A-2 of this report and Ref. 4.

Cutoff discriminator. See Eq. 7.10.

Ratio of modal sound power to modal sound pressure, see Eq. 7.9.

h/R, annulus height/effective radius

acoustic intensity

Glegg's vorticity factor. See Eq. B-4 and Ref. 4.

turbulence scale/R

axial and tangential Mach numbers of mean flow, U/a,. and V/ar

See Section 5

= Pr / Po

"effective radius" of fan; used for scaling

scattering coefficient, see Section 5

wave type. See Section 5.

axial component of mean velocity

tangential component of mean velocity

mean velocity

r is region,

A

B

S

state vector, see Section 6

source vector, see Section 6

scattering/coupling matrix, see Section 6

and
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a

fix

),

6()

Ep

Ep

¢
P

v

2.

(y

0

P

6O

COo

chordwise wavenumber in cascade coordinate system

,__M 2

ratio of specific heats, 1.4 for air

Kroneker delta, = 1 for i = j and = 0 for i _ j

Dirac delta or impulse function

= 1 forp = 0 and = ½ forp>0

=2 forp=0 and= 1 forp>0

= y/R, tangential angle in duct coordinates

radial mode order

radial wavenumber = pz/Ho

result of convective derivative acting on exponentials, see Eq. 3-7

interblade phase angle

stagger angle

density

one half the time for the block of flow under consideration to pass through the

cascade, see discussion in conjunction with Eqs. 7-25 to 7-29

2z times frequency

offset frequency

angular speed of rotor

A AR/ar

superscripts

( )r region =1 upstream of rotor, =2 between rotor and stator, =3 downstream of stator

( ) complex conjugate

subscripts

( )T denotes wave type, see Section 5

overbars and hats

( ) normalization by chord

) normalization by R
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